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Resumo 
 

Este texto apresenta a fundamentação teórica adotada para embasar o minicurso, de mesmo título, 

dirigido a professores (formação: pré-serviço e em serviço) da Educação Básica. A proposta é tratar 

de forma interativa e manipulativa ─ sem distanciar-se de conceitos matemáticos ─ da temática 

sugerida, abordando historicamente os seguintes aspectos: (i) a questão da incomensurabilidade 

entre o lado e a diagonal de um quadrado; (ii) tratamento prático do uso do Pi e do número de ouro 

na construção de pirâmides egípcias; (iii) o cálculo do número de ouro a partir de princípios de 

proporcionalidade e resolução de equação do 2º grau; (iv) A presença do Pi e do número de ouro na 

natureza; (v) a existência de padrões matemáticos nas obras de Leonardo Da Vinci; (vi) 

possibilidades de abordagens do caráter inter, trans e pluri ou multidisciplinar de Matemática e 

Artes na sala de aula. O objetivo não se restringe tão-somente à busca da transversalidade entre 

Matemática e Artes, mas apresentar a Matemática como ferramenta de leitura de processos, 

fenômenos, modelos e textos, dos quais se destacam obras de arte. A ideia é municiar o professor 

(sobretudo com análises e investigações a partir da própria prática) com instrumentos que 

possibilitem romper com dispositivos táticos de controle do Ensino Tradicional de Matemática 

(ETM): centralismo e expositivo professoral onde o conteúdo é apresentado de forma imutável, 

descontextualizada, linear a partir do receituário: definição + propriedades + exemplos + exercícios 

de fixação + teste. Este trabalho fundamenta-se a partir da pesquisa de natureza qualitativa, 

bibliográfica e exploratória, porém, também do tipo participante, visto que todos os procedimentos 

foram discutidos em sessões plenárias do Grupo de Pesquisa em Matemática Pura, Aplicada e 

Educação Matemática – Gepemem. O mesmo é base constituinte ao Trabalho de Conclusão de 

Curso (TCC) cujo título é: “É possível identificar padrões matemáticos em obras de Leonardo Da 

Vinci? Que padrões são esses?”. 

Palavras-chave: Ambiente Investigativo de Aprendizagem; História da Matemática; Grandezas 

incomensuráveis; Número de Ouro. 
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1. Problemática 

1.1. A relação primitiva de Matemática e Artes e a gênese da ruptura entre as mesmas 

A Matemática, como área do conhecimento na História da humanidade é tomada 

como ferramenta de leitura do mundo em diversas áreas ─ Física, Química, Biologia, 

História, Filosofia, Geografia, Música, Artes, Astronomia, Linguagens etc. 

Ao retratar paisagens e animais e, mais tarde, esculpir em ossos marcas que 

representavam os animais capturados, o homem primitivo iniciou a busca da 

organização do seu entorno por meio da Arte e da Matemática. (ZALESKI 

FILHO, 2013, p. 13) 

O uso de seus princípios, conceitos e métodos, ao longo dos tempos, tem sido 

relevante à construção e à transformação de sociedades. Desde a pré-história, como descrito 

na citação antecedente, há relatos de sua utilização. Foi estudada e empregada por 

babilônios, chineses e gregos, por exemplo. Foi base de pensamentos de grandes vultos na 

História das civilizações. Platão
3
 colocou na inscrição da porta de entrada de sua academia: 

"Que ninguém ignorante em Geometria entre aqui.". Aristóteles
4
 e Pitágoras

5
, dentre outros 

pensadores gregos da época, direta ou indiretamente, apoiaram o estudo da Matemática, 

                                                 
3
 Platão (427 – 347 a.C.), aristocrata de nascimento, filósofo grego nascido em Atenas, considerado 

um dos principais pensadores gregos, pois influenciou profundamente a filosofia ocidental. Suas ideias 

baseiam-se na diferenciação do mundo entre as coisas sensíveis (mundo das ideias e a inteligência) e as coisas 

visíveis (seres vivos e a matéria). Teve sua obra interpretada de maneiras diversas, “[...] tanto por Aristóteles 

quanto por Plotino. Descartes, Kant e Hegel inspiraram-se nela. E ela nos ensina que existe um ponto de 

convergência de todos esses caminhos, bem além das aparências ilusórias que só levam ao ceticismo e à 

inadequação do espírito. Baseia-se em sua fé na autoridade da razão que, adquirida pelo homem, permite-lhe 

transpor as fronteiras da necessidade, e ao mesmo tempo, merecer sua própria dignidade.” (HUISMAN, 2001, 

p. 774). 
4
 Aristóteles (384 - 322 a.C.), filósofo grego, nasceu em Estágira, colônia de origem jônica no reino 

da Macedônia. Por ser filho do médico do rei Amintas, gozou de privilégios para estudar. Aos 17 anos, foi 

enviado para a Academia de Platão em Atenas, na qual permanecerá por 20 anos, inicialmente como 

discípulo, depois como professor, até a morte de Platão. Possuía gosto pelos conhecimentos experimentais e 

da natureza, ao mesmo tempo em que obteve sucesso como metafísico. 
5
 Pitágoras de Samos (580 a 500 a.C.), filósofo e matemático grego que teve como mestres ou 

interlocutores, Tales de Mileto (624 a.C. a 546 a.C.), precursor do raciocínio dedutivo e da Geometria 

Demonstrativa, um dos sete sábios da Antiguidade, Anaximandro Sonchi – sacerdote egípcio – e Zaratustra, 

dentre outros. Viajou pelo Egito e Babilônia antes de se estabelecer em Crótona (região da Magna Grécia, 

atualmente Itália), onde criou a Escola Pitagórica, com forte tendência esotérica. 

http://www.suapesquisa.com/filosofia
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tanto na sua forma abstrata – e até esotérica – quanto no auxílio de resolução de problemas 

práticos. O que leva a inferir que a Matemática foi de suma importância na base da 

formação das sociedades antigas e a relação entre Matemática e Arte não é fruto de 

modismo contemporâneo ou pós-moderno. 

Com a construção de armas e utensílios utilizando pedras, ossos e madeira, que 

depois de prontos eram decorados, começou a existir também a convivência entre 

formas, tamanhos ou dimensões com símbolos e padrões. No decorrer da história 

humana, a Arte e a Matemática continuaram a contribuir para organizar e explicar 

as aquisições culturais. (ZALESKI FILHO, 2013, p. 14) 

O seu estudo não era tão-somente destinado para resolver problemas, mas a 

Matemática foi motivo de admiração e fascínio de povos antigos, ou seja, a Matemática foi 

tomada como Arte e Filosofia, técnica e ciência. Desde a antiguidade clássica, na Arte 

grega observamos certa preocupação com a busca exacerbada pela simetria, pela beleza 

clássica a partir da estética que tomava as relações áureas como padrão. Na Arte romana, 

por exemplo, mosaicos eram construídos a partir de soluções daquilo que hoje designamos 

por matrizes − para arcos, distribuição de cores, ocupação espacial. A precisão e marcação 

juntavam-se a todos os anseios e desejos do artista, em chegar ao ápice de sua obra prima, 

sendo a Matemática o desenrolar dos carretéis para o aperfeiçoamento das obras artísticas. 

Contudo, os pitagóricos, a partir da instituição do regime de verdade de que “Tudo é 

número”, abrem espaço à perpetuação da crença de que a Matemática, por si só, poderia 

explicar o mundo, não necessitando, para tal, de nenhuma outra vertente do conhecimento, 

incluindo aí também a Arte. Tal pensamento “em conjunto com o desprezo que Platão 

sentia pelos artistas plásticos coloca a Matemática e a Arte em patamares distintos e pode 

ter contribuído para o afastamento entre a Arte e a Matemática." (ZALESKI FILHO, 2013, 

p. 25). 

[...] em algum momento da história da humanidade, a Arte "afastou-se" da 

Matemática e de outros campos das ciências. Qual o motivo, ou quais são os 

motivos desse afastamento? Talvez uma das razões tenha sido uma herança da 

Filosofia Grega: a ideia de um mundo dividido em superior e inferior [...] 

(ZALESKI FILHO, 2013, p. 13) 
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1.2. Uma possível gênese à descontextualização do ensino da Matemática 

Chaves (2004, p. 160-161) destaca que um ambiente de aprendizagem pautado em 

um currículo rígido, onde o aluno é colocado como um ser passivo às informações advindas 

do professor por meio de exposições homiléticas não é exclusividade das sociedades 

modernas e pós-modernas. Arquitas
6
, responsável pela continuidade da tradição pitagórica, 

pôs a Aritmética acima da Geometria, contudo, sua relação com os números não era tão 

esotérica como para Pitágoras ou mística e religiosa para Filolau
7
 de Crotona. 

Arquitas parece ter dado considerável atenção ao papel da matemática no 

aprendizado, e foi-lhe atribuída a designação dos quatro ramos no quadrivium 

matemático – aritmética (ou números em repouso), geometria (ou grandezas em 

repouso), música (ou números em movimento) e astronomia (ou grandeza em 

movimento). Esses temas, juntos com o trivium consistindo de gramática, retórica 

e dialética (eu Aristóteles atribuía a Zeno), constituíram mais tarde as sete artes 

liberais, portanto o papel proeminente que a matemática desempenhou na 

educação se deve em não pequena medida a Arquitas. (BOYER, 1978, p. 52) 

Para negar o paradigma existente − que consagra a hegemonia do Ensino 

Tradicional de Matemática (ETM), pautado em verdades cristalizadas, que põem a ordem 

curricular acima do diálogo, da criatividade e da investigação como forma de aprendizagem 

− Chaves (2004) aponta que, após Arquitas, que valorizava a música, o que vemos é um 

apego às coisas estáticas onde a ideia de movimento foi gradativamente esquecida, 

tornando-a assim estática, descontextualizada. 

Plotino
8
, que espiritualizava a Arte, transcende Platão e defende que: 

                                                 
6
 Sábio grego (428 e 365 a.C.) a quem foi atribuído o desenvolvimento do processo e algoritmo para 

extração de raiz quadrada (processo conhecido como algoritmo de Newton) mas, segundo Boyer (1978, p.21) 

este processo já era conhecido pelos mesopotâmios. 
7
 Filósofo grego (± 470 a 385 a.C.) que escreveu um livro em que expunha a doutrina pitagórica (que 

era reservada apenas aos discípulos). Foi o primeiro pensador a atribuir movimento à Terra propondo um 

sistema no qual a Terra girava em torno de um fogo central, que não era o Sol. 
8
 Filósofo grego (205 a 270 d.C.), nascido no Egito, dividia o universo em três hipóstases: O Uno − 

refere-se a Deus, dado que sua principal característica é a indivisibilidade − o Nous (ou mente) − termo 

http://pt.wikipedia.org/wiki/Terra
http://pt.wikipedia.org/wiki/Sol
http://pt.wikipedia.org/wiki/Hip%C3%B3stase
http://pt.wikipedia.org/wiki/Uno
http://pt.wikipedia.org/wiki/Nous
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[…] a imitação dos objetos visíveis é um motivo para a atividade artística cuja 

finalidade é intuir as essências ou ideias. Para ele, a Arte, além de uma atividade 

produtiva, é um meio de conhecimento da Verdade. (ZALESKI FILHO, 2013, p. 

25) 

Marilena Chaui (in: LAFRAGUE, 1999, p. 11-12) e Chaves (2004, p. 164-165) nos 

lembram de que “para os antigos, só era possível dedicar-se à atividade do conhecimento se 

não estivesse escravizado pela obrigação de trabalhar”. A própria gênese da palavra escola 

está comprometida com o ócio, logo com a formação do homem teórico, pois ócio, em 

grego, se diz scholé que deu origem à palavra escola. 

A ideia do trabalho como desonra e degradação não é exclusiva da tradição 

judaico-cristã. Essa ideia aparece em quase todos os mitos que narram a origem 

das sociedades humanas como efeito de um crime cuja punição será a 

necessidade de trabalhar a viver. Ela também aparece nas sociedades escravistas 

antigas, como a grega e a romana, cujos poetas e filósofos não se cansam de 

proclamar o ócio como um valor indispensável para a vida livre e feliz. 

(LAFRAGUE, 1999, p. 20) 

Nessas sociedades, a atividade de produzir uma obra era tão desprezível que não 

havia a palavra trabalho. Conta-nos Chauí que os vocábulos ergon (em grego) e opus (em 

latim) referem-se exclusivamente às obras já produzidas, acabadas; isto é, tais sociedades 

não valorizavam o processo, mas tão-somente a obra concluída (o produto), tanto que 

artistas, artífices, pintores e escultores não pertenciam à nobreza. Para eles os admiradores e 

críticos (praticantes do ócio) possuíam mais prestígio do que aqueles que desenvolviam a 

dinâmica de construção da obra. Neste contexto a Arte exerce papel secundário, visto que, 

com a implantação do trivium enquanto currículo, esta se destinava aos comuns e não a 

uma formação específica, ou preparação para o trabalho, pelos motivos apresentados e que 

fundamentam a justificação do opus e do ergon: “aliás, não é outra a origem da expressão 

‘isto é trivial’." (ZALESKI FILHO, 2013, p. 34). 

 

1.3. Ensinar não implica aprender 

                                                                                                                                                     
filosófico grego que significa atividade do intelecto ou da razão em oposição aos sentidos materiais, dos quais 

muitas obras designam como sinônimo de "Inteligência" ou "Pensamento" − e a Alma. 

http://pt.wikipedia.org/wiki/Alma


 
 

6 

 

Pelo modelo usual de se ensinar Matemática, adotado pelo ETM, o professor é o 

emissor da enunciação e o aluno o receptor e por isso lembremo-nos que, quem produz 

significado a respeito do que foi enunciado é o receptor e não o emissor da enunciação; 

dessa forma ensinar não implica necessariamente aprender. Assim, entendemos que não 

adianta pensarmos em passar uma grande quantidade de conteúdos e conceitos se estes não 

forem bem assimilados, apreendidos. Logo, ao invés de quantidade, por que não nos 

preocupar com qualidade de informação (qualidade referente à aplicabilidade, à 

assimilação, à contextualização, à possibilidade de conexões com outras áreas do 

conhecimento)? 

 

1.4. Ambiente de aprendizagem 

Urge rompermos o ambiente hegemônico (aulas centradas no professor, alunos 

passivos a ideias prontas, grades curriculares rígidas, extensas, lineares, 

descontextualizadas etc.) onde se desenvolve o ETM e buscarmos, caminhar, navegar, 

testar, transitar por outros ambientes de aprendizagem que propiciem ao aluno, antes de 

qualquer coisa, o prazer de investigar para produzir novos saberes e, com isso, construir 

conhecimento. 

O ambiente hegemônico a que nos referimos é aquele onde o professor não se 

preocupa em associar os conceitos matemáticos a quaisquer outras áreas do conhecimento, 

como por exemplo, à Física (usar a ideia das funções temporais de distância percorrida e 

velocidade para falar respectivamente em função quadrática e função linear, por exemplo), 

ou à Biologia, ou à Geografia, (associar dinâmica populacional – de bactérias, insetos, 

pessoas – à progressão geométrica e esta a função exponencial). Nesta referência há uma 

preocupação de se ensinar a Matemática para e pela Matemática, exclusivamente. As 

consequências disso nos leva ao encontro do que Paulo Freire, em seu clássico, Pedagogia 

do Oprimido classifica de uma educação bancária, oca, descontextualizada, não 

comprometida com a vida, ou melhor, com quaisquer possíveis intervenções que se possam 
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desestabilizar a inercia educacional vigente no ETM, muito menos desestabilizar, 

consequentemente o sistema político que se perpetua. No que se refere ao ensino da 

Matemática, permanecer nesse ambiente é perpetuar o ergon ou o opus; isto é, apenas o 

trabalho realizado, pronto e acabado desconsiderando o processo. Somente o resultado 

interessa (aprovado ou não, apto ou não à sociedade de consumo). 

Que professor de Matemática nunca se deparou com um exercício em que ficasse agarrado 

por horas e após diversas tentativas chegasse, ou não, a uma solução? Com o furor 

pedagógico inabalável tal professor vai à aula e apresenta tão-somente o produto final, fruto 

de árduas horas de trabalho. Essa solução é a síntese do que fora produzido (o ergon ou o 

opus). O processo que desencadeou tal produto foi para lixeira em forma de dezenas de 

folhas de papel rabiscadas e amaçadas. A solução sintetizada do referido exercício, focando 

o ergon, diante de seus alunos, o eleva ao pedestal da sabedoria e da erudição, ainda mais 

quando o mesmo resolve bradar: “isso é trivial!”. 

O processo que levou a tal conclusão é que é frutífero à aprendizagem. A arte está 

no desenvolvimento, na batalha, nas tentativas e erros. Mas com o propósito de ser didático, 

tal professor, restringiu-se ao opus. Tal como Arquitas, por mais que pensemos no 

movimento (assim como na Astronomia e na Música) esse professor reduziu sua prática ao 

estático, pois o processo foi excluído.  

No modelo do ETM há uma ordem curricular mantida – rígida e imutável. Por 

exemplo, na 1ª série do Ensino Médio usualmente se ensina primeiramente “a definição” de 

conjunto, depois “a definição” de relação, depois “a definição” de função, depois “as 

definições” pertinentes aos tipos de funções que os autores julgam compatíveis à Educação 

Básica etc. Após cada “definição” são apresentadas as respectivas propriedades e depois 

exercícios. Assim, todas as aulas são reduzidas a uma rígida estrutura de se ensinar 

Matemática. 

Definição  Propriedades  Exemplos  Exercícios 
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Quadro 1: A linearidade do ambiente vigente no ETM. 

Essa estrutura (Cf. Quadro 1) juntamente com ambiente de aprendizagem que 

privilegia o ergon ou o opus é denominada de paradigma do exercício e é apresentado em 

Skovsmose (2000, p. 75) e Chaves (2004, p. 76-77). Tal ambiente é deveras peculiar, pois a 

maioria das aulas de Matemática, ao longo dos tempos, se processa homileticamente 

segundo tal paradigma. Aprendemos e ensinamos do mesmo jeito que aprendemos. A 

repetição desse jeito de ensinar muito mais do que enrijecer e manter uma ordem curricular 

impossibilita mudanças e alimenta alguns mitos nocivos às nossas expectativas como 

educadores. É o efeito Dolly ou clonagem acadêmica que se perpetua e reproduz os iguais 

(CHAVES, 2004, p. 186). Alimenta, por exemplo, mitos como: “Matemática é difícil”, 

“Quem sabe Matemática é inteligente”, donde se conclui que “Quem não sabe não é 

inteligente”, “Sou professor de Matemática e não de História por isso não vou dar ênfase a 

essa parte do livro” etc.  

Também a linearidade proposta no quadro 1 possibilita o entendimento de que o 

processo de ensino leva a uma aprendizagem que se dá de forma linear e evolutiva. 

Evolutiva pode ser, mas se for entendida como transformação, transvalorização, jamais 

como suavemente ascendente. Transvalorizar-se implica em romper com verdades que se 

possui. Como apresenta Chaves (2004) ao discutir o conhecimento em Nietzsche: “é 

preciso romper com aquilo que se pensa que sabe para construir conhecimento”. É preciso 

zombar, tripudiar, romper com verdades cristalizadas. E isso o aprendizado se dá a partir de 

sucessivas rupturas que tornam a trajetória não retilínea, muito menos estritamente ascende. 

O processo é oscilatório. Por isso aprende-se bem mais a partir dos erros do que dos 

acertos. 

A necessidade de manutenção da rigidez curricular justifica-se por ser tal rigidez um 

dispositivo de controle. Além da ordem curricular podemos destacar como dispositivo de 

controle as aulas expositivas, centradas no professor (agente responsável por manter o 
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sistema – o propagandista) reduzindo o aluno a um elemento passivo, mero espectador 

(agente receptor das propagandas – o consumidor). 

Dessa forma, o ambiente denominado paradigma do exercício se configura como 

lugar-comum onde se desenvolve o ETM: apresentado através de aulas expositivas, 

descontextualizadas, com referência exclusiva à Matemática, centrada somente no discurso 

do professor, que replica o discurso do livro pronto a ser consumido, como uma 

programação curricular que não permite a experimentação, com a investigação, com a 

trans, com a multi ou pluri e a interdisciplinaridade
9
. Mantendo-se tal regime de verdade, o 

do paradigma do exercício, o aluno assume uma postura de passividade, sujeitando-se a 

vontades que não são suas. Este Ambiente privilegia a Matemática (com formalismo 

exacerbado) e esta passa a ser imutável, incontestável, venerada, descompromissada com a 

vida e com as formas de exaltá-la e representá-la, como as Artes, por exemplo. 

 

2. Justificativa 

2.1. Um possível entendimento a respeito de nossa proposta 

Ao longo desta oficina apresentaremos uma dinâmica e não um produto didático ou 

um material didático pedagógico (MDP) e solicitamos que não entenda essa dinâmica tão-

somente como um produto (ergon ou opus), mas um processo de capacitação para o ensino 

de Matemática que toma como base um referencial teórico que se contrapõe ao dispositivo 

tático do ETM, o paradigma do exercício e seus dispositivos de controle. Esse processo é 

destinado àqueles que queiram romper com tal ambiente e buscam um ambiente 

investigativo a partir da História da Matemática e da Arte, bem como de instrumentos 

manipulativos que privilegiem a ação (a dinâmica) no lugar do produto (o ergon ou o opus). 

                                                 
9
 Entenderemos como pluri ou multidisciplinar a justaposição de várias disciplinas sem nenhuma 

tentativa de síntese. Segundo Weril; D’Ambrosio: Crema (1993) esse é o modelo predominante nas 

universidades francesas. Quando nos referimos à interdisciplinaridade levamos em conta a síntese de duas ou 

mais disciplinas, com foco em uma nova ordem do ordem, caracterizada por novas enunciações descritivas e 

novas relações estruturais. Por transdisciplinar tomaremos como o reconhecimento da interdependência de 

todos os aspectos de uma dada situação a ser estudada, que vai além dos códigos e enunciações típicos de uma 

disciplina, buscando assim uma visão holística a respeito do problema. 
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Nossa expectativa é que essa prática seja entendida como uma ferramenta 

pedagógica – de reflexão de nossas práticas docentes – que sirva como um elemento 

norteador na elaboração de planos e roteiros de atividades que coloquem o aluno como ator 

e coautor de um processo investigativo. 

É relevante não perdemos de vista os motivos pelo qual tal dinâmica será 

apresentada. Convidamos-lhes a entendê-la como um – e não o – referencial; um subsídio à 

capacitação de professores de Matemática, de maneira que os mesmos possam trabalhar de 

forma integrada, participativa e colaborativa com demais professores de outras áreas do 

conhecimento no desenvolvimento de temas que sejam substanciais à formação do 

indivíduo, como ser reflexivo, sobretudo sobre suas próprias atitudes. 

Ao longo deste texto abordaremos padrões; sobretudo, numéricos e geométricos, 

pois entendemos que é peculiar ao ser humano, bem como a outros animais – os corvos
10

, 

por exemplo – avaliar, analisar e comparar padrões, mas um padrão não é um olhar 

universal. Há padrões e depositar um olhar a respeito de uma obra de Arte, de um foco em 

relação à natureza ou na leitura de um texto, é peculiar a cada indivíduo que tomará como 

referência sua trajetória, seu entendimento de mundo, suas concepções e regime de 

verdades da qual está comprometido ou tomado. Daí a relevância de realizarmos uma 

arqueologia a respeito de padrões tomados pela História da humanidade. 

Ao longo da história, número e números têm tido uma grande influência na nossa 

cultura e na nossa linguagem. Há muitas palavras associadas aos números, por 

exemplo, bicicleta tem duas roas, um tripé tem três pés, um octogenário já viveu 

8 décadas, etc. A história dos números começa antes da nossa própria história. 

Certas aves são capazes de se aperceber se foi retirado algum ovo do seu ninho. 

Provavelmente terão uma ideia primária sobre o número de ovos que lá deveria 

estar. Dantzig descreve uma experiência em que os corvos reconhecem até quatro 

homens (SILVA; PENA, 2014, p.4) 

 

 

                                                 
10

 Dantizg (1970, apud: Brasil, 2014, p.7) afirma que alguns animais também possuem senso 

numérico, mesmo que rudimentares e restritos, como o caso específico do corvo que consegue identificar se 

são retirados dois ou mais ovos de seus ninhos. 
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2.2. O porquê Leonardo Da Vinci
11

: 

“A massificação procura baixar a qualidade artística 

para a altura do gosto médio. 

Em arte, o gosto médio é mais prejudicial do que o mau gosto... 

Nunca vi um gênio com gosto médio”. 

(ARIANO SUASSUNA) 

 

Nossa (orientando e orientador) sede e curiosidade por conhecimento levam-nos a 

refletir a respeito de diversos aspectos da vida e obras de Leonardo. Até onde estudar tal 

cientista nos proporcionará ricos saberes para nossa formação acadêmica? Há padrões 

matemáticos em obras de Da Vinci? Quais? Ele optou por utilizá-los ou é tão-somente uma 

forma de modelarmos (ou efetuarmos leituras de) suas obras? Diante de tais perguntas 

motivamo-nos a escrever este trabalho. 

Se tivéssemos que resumir nosso fascínio pelo tema em apenas uma frase, 

escolheríamos: 

O homem é único não porque produz ciência, e ele não é único porque produz 

arte, mas sim porque ciência e arte, igualmente, são expressões da maravilhosa 

plasticidade de sua mente. (WHITE, 2002, p. 15) 

                                                 
11

 Leonardo da Vinci (15/04/1452 —  02/05/1519), artista renascentista italiano. Há dúvidas a 

respeito de onde nascera. Para alguns historiadores foi  em Anchiano, enquanto para outros, foi numa cidade, 

situada às margens do rio Arno, perto dos montes Albanos, entre as cidades italianas de Florença e Pisa. Foi 

um dos mais importantes pintores do Renascimento Cultural. Considerado um gênio, pois se mostrou um 

excelente anatomista, engenheiro, matemático músico, naturalista, arquiteto, inventor e escultor. Seus 

trabalhos e projetos científicos quase sempre ficaram escondidos em livros de anotações (muitos escritos em 

códigos), e foi como artista que conseguiu o reconhecimento e o prestígio das pessoas de sua época. 

http://pt.wikipedia.org/wiki/2_de_maio
http://pt.wikipedia.org/wiki/2_de_maio
http://www.suapesquisa.com/cidadesdomundo/florenca.htm
http://www.suapesquisa.com/profissoes/arquiteto.htm
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Leonardo Da Vinci consegue realizar tal façanha, juntar ciência com Arte, 

conseguiu manipular a beleza de suas criações utilizando artífices científicos e, em 

contrapartida, tornou seus estudos científicos de beleza insofismável aos olhos doutrem, 

utilizando a Arte. Juntou a curiosidade de aprender com o prazer de criar, resultando em 

obras de significados extremamente importantes ao desenvolvimento de estudos de outros 

cientistas de sua e de épocas futuras, produziu obras com significados claros e ao mesmo 

tempo conseguiu elaborar objetos enigmáticos, que até aos dias contemporâneos iludem e 

deslumbram de uma maneira fantástica, mentes e mais mentes, pensadores e mais 

pensadores. 

Assim, nosso objetivo não é estudar toda a vida de Leonardo Da Vinci, mas sim 

relatar alguns pontos da vida desta figura humana ímpar, bem como analisar, identificar e 

apresentar a possível existência de padrões matemáticos em três de suas mais conhecidas 

obras − a Mona Lisa, a Dama do Arminho, a Dama do Ramalhete e o Homem Vitruviano − 

por serem obras que aparecem com frequência em livros didáticos. 

Em alguns livros didáticos a sequência de Fibonacci é apresentada de uma maneira 

bem simples, geralmente através do clássico problema da reprodução dos coelhos (assim 

como o faremos posteriormente) quando estudam sequências numéricas e seus padrões. 

Então é válido o comprometimento de estudar a presença ou não da sequência de Fibonacci 

nas obras supracitadas de Da Vinci; bem como a razão áurea, o número de ouro e a espiral 

logarítmica por estarem profundamente interligadas à sequência de Fibonacci (como 

veremos adiante). Portanto, propomos não colocar em lados opostos de uma mesma 

balança, mas misturar em uma mesma panela, Arte e Matemática em nosso objeto de 

estudo de maneira concisa, tendo em vista que este estudo possa proporcionar contribuições 

para aulas de Matemática estabelecendo, como já afirmamos, relações inter ou trans ou 

pluri ou multidisciplinares. 
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3. Discutindo academicamente o processo no trânsito da Matemática à Arte 

3.1. Uma arqueologia da Geometria grega 

Tomemos como ponto de partida algumas linhas para discutirmos um pouco a 

respeito de uma possível gênese da Geometria, de Pitágoras e dos pitagóricos. 

Caraça (1989), ao discutir as relações entre a operação de medição, propriedade 

privada e Estado, exalta Heródoto
12

 ao escrever a respeito da História dos egípcios em seu 

livro II (Euterpe), das suas Histórias, e refere-se à Geometria da seguinte maneira: 

Disseram-me que este rei (Sesóstris) tinha repartido todo o Egito entre os 

egípcios, e que tinha dado a cada um uma porção igual e rectangular de terra, com 

a obrigação de pagar por um ano um certo tributo. Que se a porção de algum 

fosse diminuída pelo rio (Nilo), ele fosse procurar o rei e lhe expusesse o que 

tinha acontecido à sua terra. Que ao mesmo tempo o rei enviava medidores ao 

local e fazia medir a terra, a fim de saber de quanto ela estava diminuída e de só 

fazer pagar o tributo conforme o que tivesse ficado de terra. Eu creio que foi daí 

que nasceu a Geometria e que depois ela passou aos gregos. (CARAÇA, 1989, p. 

32) (ipsis verbis). 

A mesma obra destaca ainda que a necessidade de expressão numérica para medição 

advém das relações do indivíduo para com o Estado, com base na propriedade e na 

cobrança de tributos, chamando atenção para o fato de que Sesóstris viveu há mais de 4.000 

anos. Observemos que dessa forma a gênese do problema da Geometria está presente em 

relações socioambientais, socioculturais e socioeconômicas. Para os egípcios e babilônios 

não havia um culto à Matemática como para os gregos. Eles a tomavam como ferramenta 

de resolução de problemas práticos. Tanto que: 

Pode-se dizer, parece que sem qualquer sombra de dúvida, que o conhecimento 

matemático tanto egípcio quanto o babilônico – este, sabemos hoje graças ao 

trabalho de Otto Neugebauer, bem mais refinado do que aquele – tinha a 

experiência como critério de verdade. 

Os gregos herdaram, assim nos diz a tradição, tal conhecimento. Mas, o que 

satisfazia egípcios e babilônios não bastou para contentar a exigência grega. Com 

                                                 
12

 Heródoto (485? a 420 a.C.), geógrafo e historiador grego, considerado pai da História, nascido  

em Halicarnasso, foi autor da história da invasão persa da Grécia nos princípios do século V a.C., conhecida 

simplesmente como As Histórias de Heródoto. Esta obra foi reconhecida como uma nova forma 

de literatura pouco depois de ser publicada. 

 

http://pt.wikipedia.org/wiki/485_a.C.
http://pt.wikipedia.org/wiki/420_a.C.
http://pt.wikipedia.org/wiki/Ge%C3%B3grafo
http://pt.wikipedia.org/wiki/Hist%C3%B3ria
http://pt.wikipedia.org/wiki/Gr%C3%A9cia_Antiga
http://pt.wikipedia.org/wiki/Halicarnasso
http://pt.wikipedia.org/wiki/P%C3%A9rsia
http://pt.wikipedia.org/wiki/Hist%C3%B3rias_(Her%C3%B3doto)
http://pt.wikipedia.org/wiki/Literatura
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os matemáticos da Grécia, a razão suplanta e empeiria como critério e verdade e a 

matemática ganha características de uma ciência dedutiva. (BICUDO, 2009, p. 

77). 

Tais relações com a Matemática (mística para os gregos e prática para egípcios e 

babilônios) podem ser observadas também no seguinte texto: 

Os autores gregos não deixaram de manifestar seu respeito pela sabedoria 

oriental, e essa sabedoria era acessível a todos que pudessem viajar ao Egito e à 

Babilônia. Há também evidências internas de uma conexão com o Oriente. O 

misticismo grego primitivo em matemática deixa transparecer uma forte 

influência oriental e escritos gregos mostram uma perpetuação helênica da 

tradição mais aritmética do Oriente. Há também fortes elos ligando a astronomia 

grega à Mesopotâmia. (EVES, 2004, p.96) 

Chaves (2004), ao tratar de uma das técnicas de rejeição do discurso, atenta para o 

fato de que, se por um lado Pitágoras atraiu muitos adeptos e fora merecedor de muitos 

comentários pelos seus feitos como geômetra, por suas concepções filosóficas, pelo 

conteúdo aritmético de sua doutrina, ou ainda por suas ambições políticas
13

, por outro lado, 

o mesmo atraiu muitos desafetos, principalmente Policrates – o tirano de Samos – e Cílon
14

 

(que acabou apropriando-se do seu livro secreto A palavra Sagrada – Hirós logos − e expôs 

à multidão trechos da obra roubada, demostrando que o catecismo religioso dos pitagóricos 

atentava contra a liberdade). Além disso, a credibilidade de Pitágoras também fora colocada 

à prova quando da crise da incomensurabilidade, visto que o lado e a diagonal de um 

quadrado são grandezas incomensuráveis e, para a doutrina pitagórica: 

[...] tudo é número”, ou seja, tudo podia ser explicado através dos números 

(inteiros) e suas razões (números racionais). Acreditava-se também que dados 

dois segmentos quaisquer eles eram sempre comensuráveis, i.e., que existia um 

terceiro segmento, menor que os dois primeiros, tal que cada um deles era 

múltiplo inteiro do menor. Em termos modernos, se a e b são os comprimentos 

                                                 
13

 Segundo Schuré (1962 – apud Chaves, 2004, p. 38), Pitágoras queria “...à frente do Estado um 

governo científico, menos misterioso, mas colocado tão alto como o sacerdócio egípcio [...] Para ele, saber é 

poder.”. Paradoxalmente, talvez seja este um vestígio da gênese do mito positivista da cientificidade (que 

sustenta que o saber gera poder), da ideologia da competência (de que quem sabe mais pode mandar e a quem 

não tem conhecimento cabe obedecer), mas também a negação do mito da neutralidade dos homens do 

conhecimento. 
14

 Para saberem mais a respeito do comportamento de Cílon e como o mesmo entrou para História, 

levando a Escola pitagórica ou Itálica às ruínas também sugerimos CONTE, Carlos Brasílio. Pitágoras: 

ciência e magia na Antiga Grécia. São Paulo, Masdras, 2008, p. 89-91. 
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dos dois segmentos, então existe um segmento de comprimento c e dois inteiros 

m e n tais que a = mc e b = nc. Daí conclui-se que a/b = m/n. Muitas das 

demonstrações à época eram baseadas neste fato. (MOREIRA & CABRAL, 

2011, p. 35) 

Consideremos, pois, o que Eves (2004, p. 103) denomina de unânime tradição, com 

atribuição a Pitágoras da, “descoberta independente do teorema sobre triângulos retângulos 

hoje universalmente conhecido pelo seu nome – que o quadrado sobre a hipotenusa de um 

triângulo retângulo é igual à soma dos quadrados sobre os catetos.” (ipsis verbis). 

Eis que surge o problema! Qual o valor da diagonal de um quadrado de lado 

medindo uma unidade de medida linear qualquer? Prontamente, se realizássemos tal 

pergunta a um aluno do 9º ano do Ensino Fundamental, é bem provável que diria 2 , 

quiçá argumentaria que tal resultado é consequência imediata do teorema de Pitágoras
15

. O 

que dizer se 2 , bem como os demais irracionais, não era na época conhecido para os 

gregos? Como veremos mais adiante, tal crise (a dos incomensuráveis) graças a Cílon e seu 

forte poder argumentativo, surge a partir do que poderíamos considerar senão uma das 

maiores construções da humanidade, pelo menos a mais popular. 

Mas Pitágoras não era apenas geômetra. Além de místico também se dedicava a 

estudar os números − que para muitos seus estudos deu origem à teoria dos números e para 

outros limitou-se a praticar uma Aritmética mística. Vejamos alguns de seus feitos em 

relação a tal área. 

 

3.1.1. Ternos de números pitagóricos 

                                                 
15

 O teorema de Pitágoras é apresentado na proposição 47, Livro I, de Os Elementos, de Euclides: 

Nos triângulos retângulos, o quadrado sobre o lado que se estende sob o ângulo reto é igual aos quadrados 

sobre os lados que contêm o ângulo reto. (BICUDO, 2009, p.132). Bem como o seu recíproco (proposição 48, 

Livro I): Caso o quadrado o quadrado sobre um dos lados de um triângulo seja igual aos quadrados dos dois 

lados restantes do triângulo, o ângulo contido pelos dois lados restantes do triângulo é reto. (BICUDO, 

2009, p.134). 
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O problema dos ternos pitagóricos consiste em determinar uma tríade de números 

inteiros positivos que possam representar os catetos e a hipotenusa de um triângulo 

retângulo. Se for uma verdade histórica ou não o que vamos tratar, não importa; afirmar 

que os triângulos de lados proporcionais a 3, 4 e 5 constituem-se como uma verdade 

aritmética ou até mesmo didático-pedagógica, visto que não há professor que deixe de 

referenciar tais triângulos como pitagóricos ou retângulos egípcios. Daí surge aquela velha 

estória de que Pitágoras observara em suas viagens ao Egito que os construtores adotavam 

cordas de 3, 4 e 5 nós equidistantes, bem como seus respectivos múltiplos para obterem um 

ângulo reto. Assim, partindo dessa verdade, podemos estabelecer a seguinte tabela: 

Tabela 1 – Ternos numéricos formadores de triângulos pitagóricos ou retângulos egípcios. 

Cateto Cateto Hipotenusa 

3 4 5 

6 8 10 

9 12 15 

12 16 20 

15 20 25 

Fonte: https://sites.google.com/site/mat5semestre/numeros-pitagoricos 

No entanto, pouco se fala, pelo menos nas salas de aula do Ensino Básico, a respeito 

de outros números pitagóricos que não os múltiplos respectivos de 3, 4 e 5. Vejamos: 

Tabela 2 – Outros ternos de numéricos pitagóricos. 

Cateto Cateto Hipotenusa 

5 12 13 

10 24 26 

20 48 52 

25 60 65 

30 72 78 

Fonte: https://sites.google.com/site/mat5semestre/numeros-pitagoricos 

É perceptível, ou não, que (3² + 4² = 5²) e (5² + 12² = 13²). O mesmo ocorre para 

cada terno de números encontrados nas linhas das tabelas 1 e 2, levando em consideração 
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que o quadrado do maior valor é a soma do quadrado dos dois menores. Quando um terno 

de números naturais possui como único fator inteiro positivo comum aos elementos do 

terno pitagórico, a unidade, então o terno é denominado de pitagórico primitivo. Assim (3, 

4 e 5) ou (5, 12 e 13) são ternos pitagóricos primitivos enquanto (6, 8 e 10) ou (10, 24 e 26) 

etc. são ternos pitagóricos não primitivos. 

Produzir tabelas numéricas não é invenção da era moderna. Tábuas matemáticas 

babilônias escritas no período de 1900 a 1600 a.C., como a conhecida Plimpton 322
16

 já 

cunhavam dados numéricos (Cf. figura 1). 

 
 

Fonte: (EVES, 2004, p. 65) 

Figura 1: Plimpton 322 (Universidade de 

Colúmbia). 

Fonte: (EVES, 2004, p. 64) 

Figura 2: Reprodução da tábua Plimpton 322 em 

nossa notação decimal. 

Se bem observarmos a figura 1, a tábua contém três colunas (reproduzidas em 

notação indo-arábica decimal na figura 2 para que possamos compará-las). Nas figuras 1 e 

2, a coluna da extrema direita é tão-somente uma relação de ordem para as linhas. “Os 

números correspondentes dessas colunas, com quatro infelizes exceções (anotadas na figura 

2 entre parênteses – grifo nosso) constituem a hipotenusa e um cateto de triângulos 

retângulos de lados inteiros.” (EVES, 2004, p.64). A obra citada sugere que não é fácil 

                                                 
16

 Segundo Eves (2004, p. 63), o nome refere-se a G.A. Plimpton da Universidade de Colúmbia, Os 

primeiros a descreverem seu conteúdo foram O. Neugebauer e Sachs em 1945, mas Jöran Friberg, apresentou, 

em Historia Mathematica, 8, n. 3, agosto de 1981, p. 277-318, um estudo mais detalhado, denominado 

Methods and traditions of Babylonian mathematics. 
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explicar a exceção da segunda linha da tabela (Cf. figura 2) e para tal propõe que se vá a J. 

Gillings, The Australian Journal of Science, 16, 1953, p. 34-36 ou a Otto Neugebauer, The 

exact sciences in antiquity, 2ª ed. 1962. Assim, uma análise da tábua Plimpton 322 oferece 

evidências razoavelmente convincentes de que os babilônios antigos sabiam como calcular 

esses ternos. (GUERATO, 2014). 

Ao analisarmos as tabelas 1 e 2, antecedentes, bem como as figuras 1 e 2 

observaremos que perpassa a História das civilizações o interesse de obter um terno de 

números naturais que mantenham entre si a relação pitagórica: (3² + 4² = 5²) e (5² + 12² = 

13²); (6² + 8² = 10²) e (10² + 24² = 26²); (9² + 12² = 15²) e (15² + 36² = 39²); ... Contudo, é 

sabido que o teorema atribuído a Pitágoras já era conhecido pelos babilônios, como se 

constata a seguir: 

Na época em que se acreditava na ‘geração espontânea’ das culturas, a idéia do 

‘milagre grego’ apaixonou várias gerações de investigadores, continuamente, até 

há menos de cinqüenta anos, a partir do impulso entusiasta do Renascimento. 

Mas depois das investigações de Thureau-Dangin
17

, Neugebauer
18

 e Bruins
19

 

sabemos que mil anos antes de Pitágoras e Euclides
20

, os babilônios já conheciam 

o célebre teorema, haviam desenvolvido e resolvido os ‘problemas de 

Diofanto
21

’, conheciam a fórmula de Gnomon
22

, atribuída a Pitágoras, bem como 

                                                 
17

 THUREAU-DANGIN: Textes mathématiques bobilonienes. Leiden, 1938. 
18

 NEUGEBAUER, O.: The exact sciences in antiquity. Providence (RhI) 1957. 
19

 BRUINS, E.M.: Nouvelles Découvertes sur les Mathématiques babiloniennes. Paris, 1952. 
20

 Pouco sabemos a respeito de Euclides (   330 a.C. −  260 a.C.) que, para alguns, nasceu na Síria 

e estudou em Atenas. As principais referências a seu respeito foram escritas por Proclo (412 d.C. − 485 d.C.) 

e Pappus de Alexandria (290 d.C. − 350 d.C.). Tido como um dos primeiros geômetras, reconhecido como um 

dos matemáticos mais notórios da Grécia Clássica e de todos os tempos. É sabido, por exemplo, que lecionou 

Matemática na escola criada por Ptolomeu Soter (306 a.C. − 283 a.C.), em Alexandria, mais conhecida por 

"Museu", local onde galgou grande prestígio pela forma como lecionava Geometria e Álgebra, atraindo para 

as suas lições um grande número de discípulos. Proclo apresenta Euclides apenas brevemente no 

seu Comentário sobre os Elementos, escrito no século V, onde escreve que Euclides foi o autor de Os 

Elementos, que foi mencionado por Arquimedes e que, quando Ptolomeu I perguntou a Euclides se não havia 

caminho mais curto para a Geometria que Os Elementos, ele responderá que não há estrada real para a 

Geometria. 
21

 Sugerimos cmup.fc.up.pt/cmup/mcsilva/HMTP8.pdf e 

https://m.facebook.com/story.php?story_fbid=343708272446841&id=100004230122582 
22

 Gnomon é a parte do relógio solar (agulha no formato de um triângulo retângulo) que possibilita a 

projeção da sombra. Heródoto relata que os babilônios foram os inventores, mas que foi Anaximandro de 

Mileto que ocidentalizou tal conhecimento. Uma distribuição em linhas ou segmentos com configuração em 

http://pt.wikipedia.org/wiki/Arquimedes
http://pt.wikipedia.org/wiki/Ptolemeu_I_S%C3%B3ter
https://m.facebook.com/story.php?story_fbid=343708272446841&id=100004230122582
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a fórmula de Heron, para uma raiz irracional. Em outros termos, tal como o 

diziam os gregos – e contra a opinião dos historiadores do século XIX – a 

matemática grega foi simplesmente a continuação de uma matemática abstrata 

amplamente desenvolvida que floresceu mais de mil anos antes do milagre grego. 

(LOPEZ, 1978, p. 143). (ipsis verbis) (NRP 19 e 20 são grifos nossos) 

Eves (2004) também trata da questão da unanimidade da atribuição a Pitágoras, mas 

também não deixa de apresentar a ressalva de que os babilônios já tratavam do assunto: 

Já vimos que esse teorema era conhecido pelos babilônios dos tempos de 

Hamurabi
23

, mais de um milênio antes, mas sua primeira demonstração geral 

pode ter sido dada por Pitágoras. Muitas conjecturas têm sido feitas quanto à 

demonstração que Pitágoras poderia ter dado, mas ao que parece foi uma 

demonstração
24

 por decomposição [...] (EVES, 2004, p. 103). (NRP 19 – grifo 

nosso) 

Observemos as figuras a seguir: 

  
Figura 3: Quadrado de lado a + b Figura 4: Quadrado de lado a + b 

Sejam a, b e c respectivamente os catetos e a hipotenusa de um triângulo retângulo 

(Figura 4). O quadrado da figura 3 é decomposto em seis partes: um quadrado de área a²; 

um quadrado de área b²; quatro triângulos retângulos de área ab/2. O quadrado de lado (a + 

                                                                                                                                                     
forma de ângulo reto denomina-se gnomon. Consultar: http://www.sitedecuriosidades.com/curiosidade/a-

historia-do-relogio-de-sol-gnomon.html. e http://nrich.maths.org/776. 
23

 Hamurabi, Hamurábi ou Hammurabi, nasceu em 1792 a.C. e faleceu em 1750 a. C., foi o sexto rei 

da primeira dinastia babilônica. Durante seu reinado conquistou a Suméria e Acádia, tornando-se o primeiro 

rei do Império Paleobabilônico (Iraque). 
24

 Ver, porém, Solved and Unsolved Problems in Number Theory, vol. 1, p. 124-125, de Daniel 

Shanks. 
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b) da figura 4 é decomposto em cinco partes: um quadrado de área c² e quatro triângulos 

retângulos de área ab/2. Tomemos as duas figuras (figuras 3 e 4) e subtraiamos partes 

iguais (congruentes – áreas equivalentes) de partes iguais (congruentes – áreas 

equivalentes), nas figuras de áreas correspondentes. Vejamos que sobrarão os quadrados de 

áreas a², b² e c². Donde se conclui que a área do quadrado maior é igual à soma das áreas 

dos quadrados menores.  

  

Figura 5: Quadrado de lado congruentes de áreas (a + b)² 

No esquema que apresentamos na figura 5, mostramos que os quadrados possuem 

áreas equivalentes e ambos têm lados medindo (a + b). Se retirarmos as partes iguais 

(congruentes), das figuras 3, 4 ou 5, ficaremos com: 
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Figura 6: Quadrado de áreas congruentes: a² + b² = c² 

No entanto, para provarmos que a parte central da segunda decomposição (figura 6) 

é efetivamente um quadrado de lado c, Eves (2004) nos lembra de que: 

[...] precisamos usar o fato de que a soma dos ângulos de um triângulo retângulo 

é igual a dois ângulos retos. Mas o Sumário Eudemiano
25

 atribuiu esse teorema 

sobre triângulos em geral aos pitagóricos. E como uma demonstração desse 

teorema requer, por sua vez, o conhecimento de certas propriedades sobre retas 

paralelas, credita-se também aos pitagóricos o desenvolvimento dessa teoria. 

(EVES, 2004, p. 104). 

Bongiovanni (2014) destaca que a demonstração supracitada (figuras 5 e 6) parte da 

premissa de que a soma das medidas dos ângulos internos de um triângulo equivale a dois 

retos e, portanto, desse fato decorre que a soma das medidas dos ângulos internos de um 

quadrilátero convexo é equivalente a quatro retos. Assim, se um quadrilátero possui três 

ângulos retos então o quarto ângulo será também reto; donde se conclui também que 

existem retângulos e quadrados. Portanto a prova convincente do teorema de Pitágoras 

apresentada nas figuras 5 e 6 apresenta hipóteses “escondidas”, tendo como ponto 

nevrálgico que a soma das medidas dos ângulos de um triângulo equivale a dois retos. Esta 

proposição apresentada em Os Elementos
26

, no livro I de Euclides (proposição 32)
27

 

                                                 
25

 O Sumário Eudemiano de Proclo contém um breve resumo do desenvolvimento da Geometria 

grega desde seus primeiros tempos até Euclides. Proclo Lício, também conhecido por Proclo Diádoco, foi um 

filósofo neoplatônico do século V. Nascido em 8 de fevereiro de 412 d.C., Constantinopla, Turquia, morreu 

em 17 de abril de 485 d.C., Atenas, Grécia. Estudou na Academia Platônica. Proclo teve o mérito de 

desenvolver a corrente de pensamento baseada em Platão, iniciada por Plotino e depois expandida por Porfírio 

e Jâmblico. Mesmo vivendo no século V d.C., teve acesso a muitos trabalhos históricos e críticos que se 

perderam, salvo alguns fragmentos preservados por ele próprio e outros. Mais informações em Guerato 

(2014). 
26

 A obra Os Elementos, atribuída a Euclides, é uma das mais influentes na História da Matemática. 

Nela, os princípios − do que se denomina de Geometria Euclidiana − foram deduzidos a partir de um pequeno 

conjunto de axiomas. É composta por treze volumes, sendo: cinco sobre Geometria Plana; três sobre números; 

um sobre a teoria das proporções; um sobre incomensuráveis; três (os últimos) sobre Geometria no Espaço. 

Escrita em grego, essa obra cobre toda a Aritmética, a Álgebra e a Geometria conhecidas até então no mundo 

grego, reunindo o trabalho de seus predecessores, como Hipócrates e Eudóxio, Euclides sistematizou todo o 

conhecimento geométrico dos antigos, intercalando os teoremas já então conhecidos com a demonstração de 

muitos outros, que completavam lacunas e davam coerência e encadeamento lógico ao sistema por ele criado. 

Após sua primeira edição foi copiado e recopiado inúmeras vezes, tendo sido traduzido para o árabe em (774). 

A obra possui mais de mil edições desde o advento da imprensa, sendo a sua primeira versão impressa datada 

https://www.google.com.br/search?biw=1366&bih=624&q=istambul+constantinopla&stick=H4sIAAAAAAAAAGOovnz8BQMDgx4HnxCHfq6-gZlZspkSmGVYaJCjJZadbKVfkJpfkJMKpIqK8_OskvKL8j5eF9JTOV5TsnBR3o6ugnvxgjyxZgA5ev3YSwAAAA&sa=X&ei=wPaeU7mjLIbisATQn4C4BA&ved=0CJ0BEJsTKAIwFA
https://www.google.com.br/search?biw=1366&bih=624&q=atenas+grecia&stick=H4sIAAAAAAAAAGOovnz8BQMDgxkHnxCHfq6-gZlZspkSO4iVZ1SlJZ-dbKVfkJpfkJOqn5KanJpYnJoSX5BaVJyfZ5WSmZqSGxL4ZpmYNfex2LBVl-Y1zti55GAxABm0mbNTAAAA&sa=X&ei=wPaeU7mjLIbisATQn4C4BA&ved=0CKIBEJsTKAIwFQ
http://pt.wikipedia.org/wiki/Os_Elementos
http://pt.wikipedia.org/wiki/Hist%C3%B3ria_da_matem%C3%A1tica
http://pt.wikipedia.org/wiki/Geometria_euclidiana
http://pt.wikipedia.org/wiki/Axioma
http://pt.wikipedia.org/wiki/Geometria_plana
http://pt.wikipedia.org/wiki/N%C3%BAmero
http://pt.wikipedia.org/wiki/Geometria
http://pt.wikipedia.org/wiki/Hip%C3%B3crates
http://pt.wikipedia.org/wiki/Eud%C3%B3xio
http://pt.wikipedia.org/wiki/774
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depende do famoso e discutido quinto postulado de Euclides. Aliás, a discussão do quinto 

postulado
28

 de Euclides é contundente para observarmos que nem toda crise leva à 

incredibilidade. Foi na tentativa milenar de provar que o quinto postulado estava errado, 

que outras Geometrias foram desenvolvidas (como, por exemplo, a esférica e a 

hiperbólica
29

). 

 

                                                                                                                                                     
de 1482 (Veneza, Itália). Essa edição foi uma tradução do árabe para o latim. 

(http://www.educ.fc.ul.pt/docentes/opombo/seminario/euclides/euclides.htm) 
27

 Tendo sido prolongado um dos lados de todo triângulo, o ângulo exterior é igual aos dois 

interiores e opostos, e os três ângulos interiores do triângulo são iguais a dois retos. (BICUDO, 2009, p.122) 
28

 “E, caso uma reta, caindo sobre duas retas, faça os ângulos interiores e do mesmo lado menores 

do que dois retos, sendo prolongadas as duas retas, ilimitadamente, encontram-se no lado do qual estão os 

menores do que dois retos.” (BICUDO, 2009, p. 98). 
29

 Credita-se o surgimento da Geometria Não-Euclidiana aos matemáticos Bolyai e Lobachevsky’s. 

Em 1829, Lobachevsky’s publicou um trabalho, desenvolvido na Rússia, a respeito de sua descoberta da 

Geometria Não-Euclidiana. A contribuição de Bolyai e de Lobachevsky’s foi descobrir que era possível 

alterar o axioma das paralelas (5º postulado de Euclides) sem que uma contradição fosse criada com os outros 

axiomas. Tal fato vem a ser a gênese de uma Geometria Não-Euclidiana, denominada de Geometria 

Hiperbólica. Nessa época, as diferenças entre essas Geometrias, a Euclidiana e a Hiperbólica, eram 

meramente formais; isto é, os respectivos conjuntos de axiomas distinguiam-se. Ou seja, não havia um 

modelo concreto para a Geometria Hiperbólica, uma representação gráfica para os objetos geométricos, como, 

por exemplo, para uma reta hiperbólica, como afirma Doria (2014, p.4). O primeiro modelo para a Geometria 

Hiperbólica foi criado por Eugenio Beltrami (1835-1900). A Geometria Esférica fora objeto de estudo devido 

aos problemas de navegação e os objetivos neste caso eram meramente computacionais. 

(http://www.bienasbm.ufba.br/M32.pdf) 

http://pt.wikipedia.org/wiki/Veneza
http://pt.wikipedia.org/wiki/It%C3%A1lia
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Figura 7: Um dos mais antigos fragmentos sobreviventes de Os Elementos de Euclides, 

encontrado entre os Papiros de Oxirrinco
30

 e datado de cerca de 100 d.C. O diagrama 

acompanha o Livro II, Proposição 5. 

Loomis (1968)
31

 coletou e classificou 370 demonstrações do teorema de Pitágoras e 

Santos; Silva; Lins (2012) o cita e chama atenção para o fato de que a demonstração por 

decomposição é uma prova experimental, do tipo geométrico, do teorema de Pitágoras e 

permite a participação do aluno na construção do material concreto (MDP feito de EVA, 

por exemplo) como também na (des)montagem do quebra-cabeça. Segundo tal referencial, 

“a interação do aluno com este tipo de demonstração permite despertar o seu interesse e 

aguçar a sua criatividade, tornando-o um agente ativo na construção do seu 

conhecimento.”. Acrescentamos também que essa interação contribui para rompermos com 

a inércia que se põe a partir do ambiente de aprendizagem do paradigma do exercício. 

Pensamos também que a interação sugerida faculta que se trabalhe com ambientes que 

perpassam os cenários para investigação. 

Visitar a História da Matemática para entender processos e como pensavam e se 

portavam diante de certas circunstâncias nossos ancestrais, como dissemos anteriormente, é 

salutar, mas também podemos partir daí para outras questões, como o que se pode verificar 

na proposta contida na figura 8 a seguir que aborda a questão da soma dos volumes. O 

recurso midiático em curso faculta leituras que não ficam no campo da demonstração ou da 

verificação, mas da observação, possível experimentação e, sobretudo discussão, pois para 

que o resultado obtido seja confiável e aceitável há de se manter a altura dos prismas 

                                                 
30

 Os Papiros de Oxirrinco (ou Oxyrhynchus Papyri) são um grupo de manuscritos, a maioria em papiro, 

descoberto num antigo depósito de lixo perto de Oxirrinco. Os manuscritos datam dos séculos I ao VI d.C. e 

incluem milhares de documentos em grego e em latim, cartas e obras literárias. Os papiros da coleção se 

dispersaram e estão atualmente alojados pelo mundo todo. Uma quantidade substancial encontra-se no 

Ashmolean Museum na Universidade de Oxford. 
31

 A primeira edição, publicado em 1927, apresenta 230 demonstrações do teorema em um único 

livro. Em 1940 saiu uma segunda edição, renovada, já com 370 demonstrações. Esse material é um 

interessante referencial teórico que possibilita ao professor acessar grande número e variedades de 

demonstrações do Teorema de Pitágoras. É possível acessá-lo em PDF: 

(http://files.eric.ed.gov/fulltext/ED037335.pdf). 

http://pt.wikipedia.org/wiki/Papiros_de_Oxirrinco
http://pt.wikipedia.org/wiki/Manuscrito
http://pt.wikipedia.org/wiki/Papiro
http://pt.wikipedia.org/wiki/Oxirrinco
http://pt.wikipedia.org/wiki/L%C3%ADngua_grega
http://pt.wikipedia.org/wiki/Latim
http://pt.wikipedia.org/wiki/Ashmolean_Museum
http://pt.wikipedia.org/wiki/Universidade_de_Oxford
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envolvidos. É o caráter dinâmico (portanto, contrapondo-se ao ergon ou ao opus) que 

possibilita a constatação, a verificação visual, mas é a intervenção (no sentido de orientação 

sistematizada do processo) que levará à formalização e à conclusão a respeito do teorema 

de Pitágoras. Se conciliarmos então o recurso de uso de material manipulativo para provar 

as relações métricas como consequência das respectivas semelhanças dos triângulos 

advindos de um triângulo retângulo e os formados a partir da altura sobre a hipotenusa, 

acrescenta-se o tato e a manipulação permite que todas as relações sejam construídas a 

partir daí, como sugerida em Chaves (2001, p. 193-195). 

 

Fonte: https://www.facebook.com/Fessora/media_set?set=vb.100000073940944&type=2   ou 

https://www.facebook.com/photo.php?v=807012685977855&set=vb.100000073940944&type=2&theater 

Figura 8: Verificação do Teorema de Pitágoras por volumes de prismas associados aos catetos e à 

hipotenusa. 

Propostas como a sugerida, em visita à História da Matemática, com o propósito de 

criar um cenário investigativo à aprendizagem, possibilitam, por exemplo, que retomemos o 

raciocínio dedutivo, usado pela primeira vez em Matemática por Tales
32

 de Mileto e, em 

                                                 
32

 Tales (625 – 546 a.C.), nascido em Mileto, colônia grega da Ásia Menor, é o primeiro dos 

pensadores jônicos, fisiologista e filósofo. Para Platão Tales é o primeiro dos grandes filósofos. Aristóteles 

também tece grandes elogios a Tales. Seu conhecimento de Astronomia permitia-o prever para o ano seguinte 

se haveria ou não abundância na colheita de azeitonas. Heródoto refere-se a Tales como aquele que põe fim 

ao combate. “Tudo o que nos contam das especulações matemáticas de Tales não passa de uma aplicação 

espetacular de seu saber a alguma dificuldade real: prediz o eclipse que, aterrorizando dois exércitos em luta, 

põe fim ao combate (Heródoto, Hist., I, e 74); desvia o curso rio para evitar que o exército de Creso construa 

uma ponte (id., e 75, p. 78); mede o alto de uma torre, a distância que separa navios no alto-mar assim como,  

https://www.facebook.com/photo.php?v=807012685977855&set=vb.100000073940944&type=2&theater
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seguida, por Pitágoras. Mais ainda, possibilita que passássemos do “como fazer” para o 

“por que” fazer? Isso porque os critérios de cientificidade também perpassavam, na época, 

do “como” para o “por que”. Talvez nos falte isso nas salas de aula. Urge transitarmos − no 

que tange tanto os conteúdos programáticos em questão bem como os recursos didáticos 

adotados – do “como” para o “por que”, 

Por exemplo, para os pré-helênicos, afirmar que ângulos opostos pelo vértice são 

congruentes era uma verdade considerada tão óbvia que bastava sobrepor um ângulo ao 

outro. Qual professor ainda não adotou a técnica de dobradura em papel para sobrepor ou 

justapor ângulos, com o intuito de justificar por visualização a verdade posta? Só que tal 

recurso didático
33

 – das dobraduras – já era adotado há muito tempo, em moldes de madeira 

com dobradiças em linhas que seriam eixos de simetria. 

Há de lembrarmos que quaisquer tentativas de dedução por recursos algébricos não 

retomam a proposta de uma Geometria dedutiva de Tales ou Pitágoras. O processo dedutivo 

da época deveria ser apresentado por régua e compasso. Não nos esqueçamos de que 

falamos de uma época inclusive que antecede à Axiomática de Euclides, portanto, 

demonstrar por decomposição que a soma dos ângulos internos de um triângulo era dois 

ângulos retos (e não 180º como dizemos hoje) era (e continua sendo) um processo que, por 

não incluir artifícios algébricos não implica em possuir menos rigor. Mas matematizar 

implica necessariamente em manter rigor? 

                                                                                                                                                     
graças à sua sombra projetada compara àquela do corpo de um homem, mede a altura de uma pirâmide. É por 

isso que se dá em geometria o nome de Tales ao teorema das proporcionais, cuja posse é implicada por todos 

esses cálculos. Claro, também os egípcios, que Tales foi visitar, eram capazes de proezas desse gênero, mas 

fazendo intervir apenas técnicas empíricas, receitas de agrimensores, de ‘atadores de corda’ como diziam os 

gregos, sem se alçar ao plano propriamente teórico. Essa maneira de resolver problemas práticos mediante 

recurso prévio ao abstrato parece, ao contrário, própria de Tales, porque propriamente grega. [...] Tales não 

estudou no Egito apenas as matemáticas; o tratado pesudo-aristotélico Sobre as Cheias do Nilo atribuiu-lhe 

uma explicação do fenômeno [...]” (HUISMAN, 2001, p. 899-900). 
33

 Adotado inclusive nos processos de formação de professores da Campanha de Aperfeiçoamento e 

Difusão do Ensino Secundário (CADES), programa do Ministério de Educação e Cultura, nos anos de 1960, 

por Júlio Cesar de Melo e Souza, no querido Malba Tahan, Jairo Bezerra, Júlio Bruno, dentre outros. 
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Se tomarmos as obras de Malba Tahan
34

 veremos que são instrutivas, incentivadoras 

e informativas, mas não necessariamente rigorosas ou demonstrativas. Basta examinarmos 

que TAHAN (1973, p. 73-81) ao tomar os ternos pitagóricos com a proposta de abordar o 

tema “Os Ternos Pitagóricos e o Amor Sincero” o assunto é abordado de forma concisa, até 

poética, séria, mas sem o rigor matemático esperado, pelo menos nos moldes atuais, 

contudo, em momento algum a abordagem deixa de ser investigativa. Por exemplo, 

TAHAN (1973, p. 75-77) argumenta que qualquer terno pitagórico será uma solução inteira 

para a equação diofantina x
2
 = y

2 
+ z

2
 na qual x é a hipotenusa e y e z são os catetos de um 

triângulo retângulo. Sugere também que para obter os ternos pitagóricos basta tomar as 

expressões (a
2
 + b

2
), 2ab e (a

2 
— b

2
) e atribuir aos elementos a e b, que nelas figuram, 

valores inteiros, positivos e desiguais, sendo a maior do que b. “O primeiro elemento, feita 

a substituição, dará o valor numérico da hipotenusa; as outras duas expressões darão 

respectiva- mente os valores numéricos dos catetos.” (TAHAN, 1973, p. 76) 

O problema dos ternos pitagóricos consiste então em encontrar números inteiros x, y 

e z que possam representar os catetos e a hipotenusa de um triângulo retângulo. Daí, o que 

está em voga e conhecer três números x, y e z que satisfaçam a relação zyx
222

 ; isto é, 

os números x, y e z que atendam tal relação denominados números pitagóricos. Pitágoras e 

Platão, cada qual em seus respectivos tempos, trabalharam para desenvolver uma expressão 

que possibilitasse sintetizar a relação entre quaisquer três números pitagóricos. Pressupõe-

se que a partir dos ternos apresentados nas tabelas 1 e 2, Pitágoras, tomando como premissa 

um número natural, m, necessariamente ímpar, 

                                                 
34

 Júlio César de Melo e Sousa (06/05/1895 — 18/06/1974), mais conhecido pelo heterônimo de Malba 

Tahan, foi um escritor e educador matemático brasileiro. Através de seus romances foi um dos maiores 

divulgadores da Matemática no Brasil. De reconhecimento internacional pelas suas obras, livros de recreação 

matemática e fábulas e lendas passadas no Oriente, muitas delas publicadas sob o heterônimo/pseudônimo de 

Malba Tahan. Seu livro mais conhecido, O Homem que Calculava, é uma coleção de problemas e 

curiosidades matemáticas apresentada sob a forma de narrativa das aventuras de um calculista persa à maneira 

dos contos de Mil e Uma Noites. 

 

http://pt.wikipedia.org/wiki/6_de_maio
http://pt.wikipedia.org/wiki/6_de_maio
http://pt.wikipedia.org/wiki/18_de_junho
http://pt.wikipedia.org/wiki/18_de_junho
http://pt.wikipedia.org/wiki/Heter%C3%B4nimo
http://pt.wikipedia.org/wiki/Literatura
http://pt.wikipedia.org/wiki/Matem%C3%A1tica
http://pt.wikipedia.org/wiki/Brasil
http://pt.wikipedia.org/wiki/Matem%C3%A1tica
http://pt.wikipedia.org/wiki/Brasil
http://pt.wikipedia.org/w/index.php?title=Recrea%C3%A7%C3%A3o_matem%C3%A1tica&action=edit&redlink=1
http://pt.wikipedia.org/w/index.php?title=Recrea%C3%A7%C3%A3o_matem%C3%A1tica&action=edit&redlink=1
http://pt.wikipedia.org/wiki/F%C3%A1bula
http://pt.wikipedia.org/wiki/Heter%C3%B4nimo
http://pt.wikipedia.org/wiki/Pseud%C3%B4nimo
http://pt.wikipedia.org/wiki/O_homem_que_calculava
http://pt.wikipedia.org/wiki/As_Mil_e_Uma_Noites


 
 

27 

 

2
2

2
2

2

2

1

2

1







 








 


mm
m         (1) 

Já Platão, por volta de 380 a.C. para determinação desses ternos desenvolveu a 

seguinte expressão: 

   22222 11)2(  mmm         (2) 

A questão é, que nenhuma dessas expressões ((1) e (2)) fornece todos os ternos 

pitagóricos. A expressão desenvolvida por Platão ((2)) pode ser considerada mais geral, 

pois m pode ser par ou ímpar, contudo, na expressão desenvolvida por Pitágoras ((1)) m 

necessariamente deve ser ímpar. 

Como já vimos anteriormente, para os pitagóricos “Tudo é número”; no entanto, os 

mesmos pitagóricos estabeleceram o que seria a gênese da relação entre a Aritmética e a 

Geometria, ao relacionarem números com formas. Mais ainda, exaltaram e estudaram 

propriedades dos números e da Aritmética juntamente com a Geometria, a Música e a 

Astronomia, que constituíam as artes liberais básicas do programa educacional pitagórico, 

o quadrivium. Assim desenvolveram os números figurados originados entre os membros 

mais antigos da academia pitagórica, segundo Eves (2004, p. 100). 

Esses números, que expressam o número de pontos em certas configurações 

geométricas, representam a nomenclatura números triangulares, números 

quadrados, números pentagonais e assim por diante. (EVES, 2004, p. 100). 
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Figura 9: Números figurados triangulares 

 

 
Figura 10: Números figurados quadrados 

 

 

A mística pitagórica relaciona a arte prática de calcular números e o estudo de 

relações abstratas envolvendo os mesmos. Não nos esqueçamos de que a Escola Pitagórica 

além de centro de estudos de Filosofia, Matemática e Ciências Naturais, foi também um 

centro iniciático, onde uma irmandade pautava-se em ritos secretos e esta perdurou por pelo 

menos dois séculos após a morte de Pitágoras. No entanto, tais princípios cobriam-na de 

mistérios, mas não de incredibilidade. 

Chamamos atenção para o fato de que, mesmo em se tratando de um assunto 

consolidado por processos históricos, não é salutar entendê-lo como algo pronto e acabado 

– como produto. É sempre possível que novas leituras (novos padrões) sejam efetuadas 

(identificados) (Cf. NRP 32). Essas novas leituras propiciam novos aprendizados, novos 

entendimentos e novas buscas, sobretudo, de padrões e, portanto, novas formas e maneiras 

de depositar um novo olhar sobre algo já visto. Visitar a História da Matemática bem como 

os problemas clássicos na qual nossos ancestrais se depararam bem mais do que mero 

diletantismo é um convite, um desafio a rompermos com o ETM e seus dispositivos; um 

convite a trabalharmos em ambientes que facultam ao aluno intuir, inferir, pesquisar, 

investigar e trabalhar de forma colaborativa, investigativa e integrada. 
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Por exemplo, Guerato (2014), ao tratar de números figurados, abre espaço para 

tecermos ao menos uma proposta: (a) de investigação histórica (ao discutir que estes se 

originaram com os membros mais antigos da escola pitagórica); (b) de abordagem 

conceitual, mas também histórica (pois expressam o número de pontos em certas 

configurações geométricas, formando um elo entre a Geometria e a Aritmética); (c) de 

ambiente de aprendizagem investigativo, pois é possível estabelecer muitos teoremas 

interessantes relativos aos números figurados – veja o exemplo a seguir. “Todo número 

quadrado é a soma de dois números triangulares sucessivos.”. O apelo geométrico, a partir 

das representações de um número quadrado e de um número triangular, trataremos em 

outro texto para não nos distanciarmos do nosso propósito. 

 

 

 

 

3.1.2. Um embaraço pitagórico 

O Livro V, de Os Elementos, é uma exposição da teoria de Eudoxo
35

 e apresenta a 

teoria das proporções na sua forma puramente geométrica
36

. Foi por meio dessa teoria, 

aplicável tanto a grandezas comensuráveis como a grandezas incomensuráveis, que se 

resolveu o problema dos números irracionais, da qual os pitagóricos se depararam e foi 

                                                 
35

 Eudoxo de Cnido (408 - 355 a. C.) é considerado por alguns como o maior dos matemáticos gregos 

clássicos, em toda a antiguidade, perdendo apenas para Arquimedes. Ele rigorosamente desenvolveu o método 

da exaustão de Antífona, um precursor do Cálculo Integral. Tornou-se conhecido devido à sua teoria das 

proporções e ao método da exaustão, além de ter desenvolvido uma série de teoremas na Geometria, aplicou 

o método de análise para estudar a secção que acredita-se ser o que hoje se denomina seção áurea. 
36

 Já o livro VI, de Os Elementos, aplica a teoria eudoxiana das proporções à Geometria Plana. 

Encontramos nele os teoremas fundamentais da semelhança de triângulos; construções de terceira, quartas e 

médias proporcionais; a resolução geométrica de equações quadráticas; a demonstração que a bissetriz de um 

ângulo de um triângulo divide o lado oposto em segmentos proporcionais aos outros dois lados; uma 

generalização do teorema de Pitágoras na qual, em vez de quadrados, traçam-se sobre os lados de um 

triângulo retângulo três figuras semelhantes descritas de maneira análoga. 

 

http://pt.wikipedia.org/wiki/Arquimedes
http://pt.wikipedia.org/wiki/M%C3%A9todo_da_exaust%C3%A3o
http://pt.wikipedia.org/wiki/M%C3%A9todo_da_exaust%C3%A3o
http://pt.wikipedia.org/wiki/C%C3%A1lculo_integral
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denominado de “a crise dos incomensuráveis”, tendo Cílon como pivô, conforme tratamos 

no item 3.1. (Uma arqueologia da Geometria grega). 

O que ficou conhecido na História da Matemática como “a crise dos 

incomensuráveis”, para uns foi um retrocesso, mas para outros a grande oportunidade de 

romper com algumas verdades que levaram à transvalorização de concepções pitagóricas 

que eram mais místicas do que científicas: como, por exemplo, a tese de que no universo 

“tudo é número”, ou seja: 

Tudo pode ser explicado através dos números (inteiros) e suas razões (números 

racionais). Acreditava-se também que dados dois segmentos quaisquer eles eram 

comensuráveis, isto é, que existia entre eles um terceiro segmento, menor que os 

dois primeiros, tal que cada um deles era múltiplo inteiro do menor. (MOREIRA; 

CABRAL, 2011, p. 35). 

Ávila (2011) afirma que: “foram os próprios pitagóricos que descobriram que o lado 

e a diagonal do quadrado são incomensuráveis.” (ÁVILA, 2011, p. 48). No item 3.1.1. 

(ternos de números pitagóricos) desse texto apresentamos o que Eves (2004, p. 103) 

denomina de “demonstração por decomposição” ou “prova experimental” (Cf. figuras de 3 

a 6). Vamos então tratar do argumento algébrico para dar conta de uma contraposição 

aritmética a respeito da questão da incomensurabilidade. 

Na Grécia antiga os gregos tratavam a questão da proporcionalidade utilizando a 

sobreposição de segmentos de retas, fato que provavelmente levou-os à teoria de Eudoxo, 

utilizando assim a noção intuitiva de tamanho de um número inteiro positivo através dessa 

ideia.  Ou seja, para tal comparação era tomado um segmento AB e um número natural m e 

denotava-se por ABm  os segmentos obtidos pela justaposição de cópias do segmento 

AB sobre uma reta suporte; assim eram obtidas m cópias de um segmento de mesmo 

tamanho. Logo, afirmar que AB  = CD  equivale dizer que os dois segmentos possuem o 

mesmo tamanho. Daí, é possível apresentar a seguinte definição: Se AB  e CD  são 
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segmentos para os quais existem números naturais p  e q  tais que CDpABq  , dizemos 

que esses segmentos são proporcionais. 

Nesse caso adotaremos a nomenclatura apresentada em Baroni; Nascimento (2005, 

p.11): 

q

p

CD

AB
:           (3) 

Consequentemente, dessa definição, uma vez que foi garantida a existência de p e 

q , temos: 

i. p > q  se, e somente se, AB  é maior que CD ; 

ii. p < q se, e somente se, AB  é menor que CD ; 

iii. p = q se, e somente se, AB  possui o mesmo tamanho (ou fica sobreposto) que CD . 

Observemos que se 
q

p

CD

AB
: , então é válido afirmar que 

qk

pk

CD

AB




: , para qualquer 

que seja o inteiro positivo k . Então, quais são todos os pares de inteiros positivos que 

possuem a mesma significação que o par formado por p e q ? 

Para dar conta a tal questão, Baroni; Nascimento (2005, p.11) apresenta a seguinte 

proposição: 

q

p

CD

AB
:  e 

n

m

CD

AB
:  se, e somente se, 

q

p

CD

AB
:  e pnqm      (4) 

Com o propósito de demonstrar tal proposição, suponhamos que 
q

p

CD

AB
:  e 

n

m

CD

AB
: . 

Assim, de CDpABq  obtemos CDpmABqn   e também, CDmABn  , donde 

tiramos CDpnCDqm  e, portanto, pnqm  . Reciprocamente, se 
q

p

CD

AB
:  e 
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pnqm  , então CDpABq   e pnqm  , em que CDqmCDpnABqn  . 

O que implicava, para os gregos, que q  cópias do segmento de reta ABn  possuem o 

mesmo tamanho que q  cópias do segmento de reta CDm  . Logo, os segmentos ABn   e 

CDm   têm o mesmo tamanho. 

Tomemos ainda a seguinte definição apresentada em Baroni; Nascimento (2005, 

p.15): Dizemos que segmentos AB  e CD  são comensuráveis (ou seja, podem ser medidos 

com a mesma unidade de medida), se existe um segmento U e naturais p e q  tais que: 

UpAB   e UqCD          (5) 

Ou seja, o que os gregos propunham, é que os segmentos AB  e CD  são 

proporcionais se, e somente se, são comensuráveis, e que qualquer segmento podia ser 

escrito como a soma de cópias de quaisquer outros segmentos. Contudo, começou-se a 

perceber que havia pares de segmentos que não eram proporcionais, segmentos que não 

poderiam ser escritos como sobreposição de cópias de outro segmento qualquer, o que 

começou a gerar certo espanto entre os matemáticos gregos. 

Para demonstrarmos aritmeticamente a questão de segmentos não-comensuráveis, 

consideremos a medição dos segmentos da figura a seguir:  

 
Figura 11: Triângulo AOB , retângulo em Ô. 

Seja AOB  um triângulo retângulo isósceles, ou seja, BOAO  , e tentemos 

resolver o seguinte problema: determinar a medida da hipotenusa AB  tomando como 
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medida de unidade o cateto AO . Se, intuitivamente, essa medida existir, então por 

consequência do que afirmamos anteriormente, há um número racional 
n

m
r   em que m e 

n são primos entre si, de forma que: 

AO
n

m
AB            (6) 

Segundo Caraça (1989, p. 49) tal igualdade é incompatível com outra igualdade 

matemática. Dado o triângulo antecedente (Cf. figura 11), pelo teorema de Pitágoras 

podemos afirmar que: 

222

OBAOAB           (7) 

Como BOAO  , vem ²²² AOAOAB  , ou seja: 

²2² AOAB           (8) 

Substituindo a expressão (6) em (7) teremos: 

²²

2

AO
n

m
AB 








          (9) 

Mas de (8) podemos afirmar que: 

2
²

²


AO

AB
                  (10) 

Assim como de (9) podemos afirmar que: 

2

²

²










n

m

AO

AB
                   (11) 

Logo, de (10) e (11) chegamos à igualdade: 

2

2










n

m
                   (12) 

Consequentemente: 
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²2² nm                     (13) 

Portanto, de (13), podemos concluir que ²m é um número par; contudo, se o 

quadrado de um número é par, então esse número também é par. Da mesma forma que o 

quadrado de todo número ímpar é ímpar. Teremos, portanto, m  par. Consequentemente n  

será ímpar, pois, por hipótese, a fração 
n

m
 é irredutível. 

Consideremos, pois k a metade de m . Assim, podemos escrever que km  2 , onde 

k é um número inteiro. Substituindo este valor de m  na igualdade (13) temos: 

   ²2²2 nk    ²2²4 nk   ²2² kn                (14) 

Donde se conclui que ²n  é par e, portanto, pela mesma razão supracitada, que n  

também é par. Portanto, n  deve ser simultaneamente par e ímpar, visto que a fração 
n

m
 é 

irredutível e isto é um absurdo, pois um número não pode ser simultaneamente par e ímpar. 

Assim, por redução ao absurdo o lado e a diagonal do quadrado, ou a hipotenusa e o cateto 

de um triângulo retângulo isósceles, são grandezas incomensuráveis. 

 

 

 

3.1.3. Números pitagóricos em distribuições gnomônicas 

Segundo Silva; Nunes (2014, p. 12) os gregos da Antiguidade consideravam 

gnomon (etmologicamente, conhecedor) como uma peça que poderia juntar-se a uma figura 

da mesma forma, mas de tamanho maior. Se tomarmos a figura 12b a seguir verificaremos 

que cada gnomon, representado pelo corredor em forma de L (refletido) representa um 

número ímpar da sequência (1, 3, 5, 7, 9, 11, ...). Observemos que cada novo quadrado 

formado apresenta como resultado a soma dos gnomons que os constituem. Comparemos 

então a figura 12b com a tabela 4 a seguir. 
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Figura 12a: Representação da distribuição de 

pontos em forma de quadrado 

Figura 12b: Gnomons que representam a série 

1 + 3 + 5 + 7 ... 

Há pouco falamos dos ternos de números pitagóricos. O terno pitagórico primitivo 

(3, 4, 5) gnomonicamente pode ser representado conforme na figura 13 a seguir, visto que: 

3² + 4² = 5²     5² − 3² = 4²                  (15) 

 

Figura 13: Representação de um terno pitagórico na forma de gnomons. 

Isto é, se do quadrado de 5 por 5 pontos retirarmos o gnomon constituído de 9 pontos, 

portanto 3², ficaremos com um quadrado de 4 por 4 pontos. 

Observando cada gnomon na figura 12b é possível construirmos a tabela 4 a seguir e 

veremos que o 1º gnomon possui 1 elemento. O 2º gnomon possui 3 elementos e se 

“juntarmos” com o primeiro formaremos um novo quadrado formado por 1 + 3 = 4 

elementos. O 3º gnomon é formado por 5 elementos e se “juntarmos” com o primeiro e o 

segundo gnomons formaremos um novo quadrado com 1 + 3 + 5 = 9 elementos. 

gnomons 
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Tabela 4 – Resultado das somas parciais por novos quadrados formados 

Ordem Adição dos elementos Soma 

1 1 1 

2 1 + 3 4 

3 1 + 3 + 5 9 

4 1 + 3 + 5 + 7 16 

5 1 + 3 + 5 + 7 + 9 25 

6 1 + 3 + 5 + 7 + 9 + 11 36 

 

Analisando algumas relações, entre linhas e colunas da tabela anterior, é possível, 

por exemplo, destacarmos algumas relações. Verificando linha por linha, por recorrência, 

na n-ésima linha teremos: (i) uma soma de n elementos, (ii) 2n – 1 elementos no gnomon; 

(iii) a soma dos n primeiros números ímpares, começando por 1, comparando, linha por 

linha, a primeira e a terceira colunas podemos verificar que o resultado é o quadrado 

perfeito correspondente. Ou seja, 

1 + 3 + 5 + 7 + 9 + ... + 2n − 1 = n²                                                                     (16) 

Que também pode ser ilustrado conforme figura 14 a seguir: 

 

Figura 14: representação gnomônica da soma de n primeiros números 

inteiros positivos ímpares. 
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Assim, podemos generalizar que: a soma de um número qualquer de inteiros 

ímpares consecutivos, começando com o 1, é um quadrado perfeito. Observemos que não 

apenas o apelo de utilização das técnicas de cor, mas também a disposição gnomônica, 

auxilia, senão na constatação, pelo menos na verificação, de que tal soma gera um quadrado 

perfeito. 

A distribuição gnomônica, bem como a organização de números segundo padrões 

(como os figurados, por exemplo) constituem-se em argumentos irrefutáveis de que a 

humanidade prima por tentar representar o universo, a vida, os objetos, a música, as 

expressões da sua cultura segundo uma organização ou decodificação matemática. Daí a 

concepção platônica de que “Deus é o grande geomêtra. Deus geometriza sem cessar.”. 

Assim, efetuar leituras matemáticas do mundo não é artifício da modernidade, mas peculiar 

aos seres humanos. 

 

 

 

 

 

3.1.4. A sequência de Fibonacci
37

: 

Foi em Liber Abacci (1202), seu livro mais famoso, que Fibonacci apresentou a 

sequência que levou seu nome, embora tal sequência já tivesse sido descrita por 

matemáticos indianos. O problema de Fibonacci consta de uma única pergunta: Quantos 

pares de coelhos podem ser gerados de um par de coelhos em um ano? 

                                                 
37

 Leonardo de Pisa nasceu em Pisa (Itália) por volta de 1175 e pensa-se que morreu em 1250, 

também em Pisa. Fibonacci: diminutivo de fillius Bonacci; ou seja, filho de Bonacci. Viajou várias vezes ao 

Oriente e ao Norte de África, onde o sistema de numeração hindu-arábico era já largamente usado. Teve 

acesso à obra de al-Khwarismi e assimilou numerosas informações aritméticas e algébricas compilando-as em 

seu livros que influenciaram a introdução do sistema de numeração hindu-arábico na Europa. Estudou as 

operações elementares, assim como os números naturais, a decomposição de números em fatores primos, as 

frações e as equações dentre outros. 
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Como hipóteses para solução ele considerou: (i) a cada mês ocorre o nascimento de 

um par (casal); (ii) um par começa a reproduzir quando completa dois meses de vida. 

Assim, observemos a figura (15) a seguir. 

 
Fonte: (CHAVES, 2011 - 5º Seminário do Programa de Iniciação Científica do IFG) 

Figura (15): Geração de pares de coelhos segundo as hipóteses do Problema de Fibonacci 

 

 

 

Vejamos que, em colunas, temos: 

1 

1 = 1 + 0 

2 = 1 + 1 

3 = 1 + 2 

5 = 2 + 3 

8 = 3 + 5 

13 = 5 + 8 

21 = 8 + 13 
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...     ...    .... 

Por recorrência podemos verificar que cada termo desta sequência (a partir do 3º) é 

a soma de outros dois termos que o antecedem. Logo, em um ano a sequência gerada foi: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144               (17) 

Uma possível configuração de gnomons a considerar, relaciona a sequência de 

Fibonacci com a sequência de retângulos áureos que formará uma espiral logarítmica (Cf. 

figuras 16 e 17). Para tal, na figura 16, basta seguir o esquema de setas apresentadas, onde 

o comprimento de cada segmento representa um termo da sequência e ao partir de um 

segmento para outro rotacionamos em 90º no sentido anti-horário. 

Dessa forma, na figura 16, temos: (a) um quadrado de lado 1; (b) um retângulo de 

dimensões 1 e 2; (c) um retângulo de dimensões 2 e 3; (d) um retângulo de dimensões 3 e 

5; (e) um retângulo de dimensões 5 e 8; (f) um retângulo de dimensões 8 e 13. 

  

 

(a) (b) 

 

(d) 
(c) 
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(e) 

 

(f) 

Figura 16: termos da sequência de Fibonacci a partir dos gnomons 

 

Na figura 17, a seguir, temos: (i) dois quadrados de lado 1; (ii) um quadrado de lado 

2; (iii) um retângulo de dimensões 2 de base e 3 de altura; (iv) um quadrado de lado 3; (v) 

um retângulo de dimensões 5 de base e 3 de altura; (vi) um quadrado de lado 5; (vii) um 

retângulo de dimensões 5 de base e 8 de altura; (viii) um quadrado de lado 8; (ix) um 

retângulo de dimensões 13 de base e 8 de altura. 
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Figura 17: Espiral logarítmica 

Como mencionamos no item 2.1. (Um possível entendimento) a busca de padrões é 

intrínseca no ser humano, bem como em alguns animais. É da natureza humana procurar 

identificar padrões para efetuar leituras do mundo e o trânsito entre a produção de 

significados a partir de padrões geométricos é mais peculiar do que se imagina; tanto que, 

ao modelarmos, buscamos sempre partir do modelo mais simples e, na busca de tal 

simplificação, é peculiar a tentativa de transformar um conjunto de dados numéricos em um 

gráfico ou padrão geométrico.  

Ao tomarmos a sequência de Fibonacci, não relacionamos todos os possíveis 

significados a serem produzidos para esse objeto, mas sim, o que em um contexto preciso 

se diz efetivamente. Logo, parafraseando Cezar (2014, p. 34), as leituras que efetuamos nos 

permitem refletir a respeito do que possivelmente venha a ser uma sequência de Fibonacci, 

por meio de construções criadas por outras pessoas, que tomamos como verdade, porém 

não necessariamente únicas. As verdades que produzimos e enunciaremos a partir do que 

nos é enunciado estão relacionadas com o contexto que estas enunciações estão inseridas e 

com os significados que produzimos a elas. 

 

3.1.5. O número de Ouro 
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“A geometria possui dois grandes tesouros: 

um é o teorema de Pitágoras; 

o outro, a divisão de uma linha em extrema e média razão.” 

(KEPLER) 

O Livro VI, de Os Elementos de Euclides, na definição 3, diz: Uma reta é dita estar 

cortada em extrema e média razão, quando como a toda esteja para o maior segmento, 

assim o maior para o menor. (BICUDO, 2009, p. 231). Comumente os compêndios de 

Desenho Geométrico, por exemplo, definem média e extrema razão (segmento áureo) 

como: 

Dividir um segmento em média e extrema razão consiste em dividi-lo em dois 

outros segmentos tais que o maior seja a média proporcional entre o segmento 

dado e o menor. O segmento maior denomina-se segmento áureo (significa 

‘segmento de ouro’, considerado pelos antigos gregos como segmento da medida 

perfeita). (PINTO, 1991, p. 93). 

Isto é, dado o segmento AB  de extremidades em A e B, o ponto X, denominado 

ponto de ouro, é tal que: 

 

XBABAX
XB

AX

AX

AB
 , 

onde AX  é o segmento áureo. 

Figura 18: Divisão de um segmento em média e extrema razão (segmento áureo) 

Ainda, Pinto (1991, p. 94) destaca, na forma de receituário, o seguinte processo para 

determinar um ponto X que divide um segmento de extremidades AB  em média e extrema 

razão: (i) traçamos uma semicircunferência (Cf. figura 19) de centro em A e extremidade 

em B; (ii) prolongamos o segmento AB  e determinamos o diâmetro CB ; (iii) traçamos 

uma perpendicular a CB  passando pelo ponto A e encontramos o raio AD ; (iv) 
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determinamos M, ponto médio do segmento CA ; (v) traçamos um arco de circunferência 

com centro em M e extremidade em D até encontramos o segmento AB e determinamos o 

ponto X que divide o segmento AB em média e extrema razão; (vi) o segmento AX  é o 

segmento áureo, visto que 
XB

AX

AX

AB
 . 

 
Figura 19: Técnica de determinação do ponto que divide um segmento em média e extrema razão. 

Se bem observarmos rADAB  , raio do semicírculo e 
2

r
MA  . Vejamos que 

RMD   é o raio do arco DMX e, consequentemente AXMAMX  ; isto é, 

22

r
Rxx

r
R                   (18) 

Se tomarmos o triângulo retângulo MAD e aplicarmos o teorema de Pitágoras 

teremos que: 

2

5r
R                     (19) 

De (18) e (19) podemos concluir que: 

...6180339887,0
2

)15(



 r

r
x                 (20) 

Agora, como AXMAMX   de (18) e (20), temos que  
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 rrRMX ...6180339887,1                 (21) 

Já Brandão (2014) conjectura que os pitagóricos utilizaram um processo geométrico 

para determinar a média e extrema razão de um segmento; isto é, para determinar o ponto 

áureo em um segmento dado. 

A forma tradicional, encontrada no livro Os elementos de Euclides, de resolução 

geométrica desta proporção é a seguinte: Dado o segmento AB, constroi-se o 

quadrado ABA'B'; constroi-se M como o ponto médio de AA'. Prolonga-se o 

segmento AA' e constroi-se a circunferência de centro M e raio MB', acha-se o 

ponto C de interseção da circunferência com a semi-reta AA'; constroi-se o 

quadrado de lado A'C. O prolongamento do lado DD' determina o ponto X em 

AB que seciona o segmento na razão desejada. 

 

FONTE: http://www.matematica.br/historia/saurea.html 

Figura 20: Demonstração segundo (BRANDÃO, 2014, ipsis verbis) 

Para determinarmos a medida do segmento áureo xAX  , consideremos o 

segmento aAB   e yMC  . Observemos que yMBMC  ' , por ser raio do arco de 

circunferência 'MCB . Como M é ponto médio do lado do quadrado, temos 
2

'
a

MA  . 

Aplicando o teorema de Pitágoras no triângulo retângulo ''MBA , temos: 

2

5

4

2
22 a

y
a

ay                   (22) 

X 

http://www.matematica.br/historia/euclides.html
http://www.matematica.br/historia/saurea.html
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Mas, como ''CDDA  é um quadrado, temos que 
2

a
yxAX  . Daí, se 

considerarmos 1a  e de (22): 

...6180339887,0
1

2

15






xAX                (23) 

Isso significa que o segmento áureo equivale a aproximadamente 61,8% do 

comprimento total do segmento, mas, 

...6180339887,1
...6180339887,0

1
...6180339887,0

1
 


          (24) 

denominado número de ouro. 

Para construirmos um retângulo áureo, seguimos os seguintes passos: (i) 

construímos o quadrado ABCD; (ii) determinamos o ponto médio M do lado AB ; (iii) 

fixamos o compasso com centro em M e extremidade em C e traçamos até a reta suporte de 

AB  o arco de circunferência CMX, onde X é a extremidade da base do retângulo áureo 

AXID. 

 

 
Figura 21: Construção do retângulo áureo a partir de um quadrado. 
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Assim, em cada retângulo formado a relação entre base e altura está diretamente 

associada à razão áurea, pois (no caso da figura 21) AX , AB  e XB  estão em média e 

extrema razão. Vejamos que na figura a seguir (figura 22) temos sucessivos retângulos 

áureos gerando quadrados de lados 1, 1, 2, 3, 5, 8, ... que são os termos da Sequência de 

Fibonacci. Eis então uma relação entre tal sequência e razão áurea. 

 
Fonte: (CHAVES, 2011 - 5º Seminário do Programa de Iniciação Científica do IFG 

Figura 22: A Sequência de Fibonacci presente no retângulo áureo. 

Ainda a respeito da Sequência de Fibonacci, observemos o que acontece quando 

tomamos dois termos consecutivos e dividimos cada termo pelo seu antecedente. 

MÊS PARES     

1 1     

2 1 1/1 1 

3 2 2/1 2 

4 3 3/2 1,5 

5 5 5/3 1,666667 

6 8 8/5 1,6 

7 13 13/8 1,625 

8 21 21/13 1,615385 

9 34 34/21 1,619048 

10 55 55/34 1,617647 

11 89 89/55 1,618182 
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12 144 144/89 1,617978 
 

Tabela 5: Razão dos termos da 

Sequência de Fibonacci 

Figura 23: Convergência das sucessivas razões entre 

termos consecutivos da Sequência de Fibonacci 

Vejamos que há convergência (gráfico da figura 23) com uma boa aproximação 

para o número phi ou número de ouro. 

 

3.1.6. Matemática e natureza: 

Sequência de Fibonacci, razão áurea, espiral logarítmica,  , a constante de Eüler 

etc. causam certo fascínio às pessoas, principalmente por suas respectivas relações com a 

natureza. A sequência de Fibonacci, por exemplo, se faz presente em configurações 

biológicas, como na disposição dos galhos das árvores ou das folhas em uma haste. Charles 

Bonnet
38

, em 1754, associou a sequência de Fibonacci ao crescimento espiralado dos 

galhos e folhas nas plantas, em arranjos de folhas (Filotaxia)
39

. 

Observemos a figura ao lado. 

Consideremos que haja um padrão 

helicoidal para as folhas em torno do caule. 

Cada conjunto de três folhas 

consecutivas (1, 2, 3) nascem formando um 

mesmo ângulo (entre 1 e 2 e entre 2 e 3), 

mantendo uma certa distância ao longo do 

caule. 

 
 

 Figura 24: Distribuição helicoidal das folhas 

                                                 
38

 Charles Bonnet (Genebra, 13/03/1720 – 20/05/1793), biólogo e filósofo suíço, autor de 
importantes “descobertas” biológicas como a partenogénese. 

39
 Filotaxia é o padrão de distribuição das folhas ao longo do caule das plantas. 

http://pt.wikipedia.org/wiki/Genebra
http://pt.wikipedia.org/wiki/13_de_mar%C3%A7o
http://pt.wikipedia.org/wiki/20_de_maio
http://pt.wikipedia.org/wiki/Bi%C3%B3logo
http://pt.wikipedia.org/wiki/Fil%C3%B3sofo
http://pt.wikipedia.org/wiki/Su%C3%AD%C3%A7a
http://pt.wikipedia.org/wiki/Partenog%C3%A9nese
http://pt.wikipedia.org/wiki/Folha_(bot%C3%A2nica)
http://pt.wikipedia.org/wiki/Caule
http://pt.wikipedia.org/wiki/Plantae
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Admitamos o mesmo padrão para todas as folhas. Na figura 24 temos, em 5 folhas, 

2 voltas. Cada volta é entendida como uma rotação de 360º para que uma folha possa se 

sobrepor à outra. Para tal, cada ângulo deverá ser igual a º144
5

º3602



. 

Pautado nos princípios da Filotaxia, segundo Teixeira (2011)
40

, o adolescente Aidan 

Dwyer, na época com apenas 13 anos, desenvolveu um modelo metálico de coleta solar 

copiando a disposição das folhas em uma árvore. O padrão por ele utilizado foi a sequência 

de Fibonacci para posicionar painéis solares como as folhas de uma árvore. 

 "Eu sabia que aqueles galhos e folhas coletavam a luz do sol para fotossíntese, 

então meu próximo experimento iria investigar se a sequência de Fibonacci 

ajudaria. Minha investigação começou quando eu tentei entender o padrão 

espiral.” (DWYER, in TEIXEIRA, 2011, p. 37) 

Mediu posições de galhos em várias árvores e teve a ideia de posicionar células 

solares em uma armação metálica imitando a configuração natural das folhas. Em paralelo, 

montou um número igual de sensores dispostos num painel, como nos coletores comerciais. 

Com equipamentos simples traçou gráficos comparativos (figuras 26 e 27) da 

captação solar e observou que sua árvore maluca conseguia coletar 20% mais de energia do 

que o painel plano comum. 

“No inverno, quando o sol é mais fraco, captei mais de 50% a mais de luz do que 

no painel, ao longo do dia inteiro.”  (A.Dwyer) 

                                                 
40

 TEIXEIRA, Carlos Alberto. Quando a solução é apenas copiar a natureza. Sábado, 20 de agosto 

de 2011; Economia. In: O Globo, p. 37 
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Figura 25: Aidan Dwyer e seu modelo metálico de coleta solar copiando a disposição das folhas em 

uma árvore. 

 

  

Figura 26: Gráfico de Setor utilizado por 

Aidan Dwyer em seu experimento 

Figura 27: Gráfico de Barra utilizado por Aidan 

Dwyer em seu experimento 

 

3.2. Um pouco da vida de Leonardo Da Vinci: 

No final do século XV e início do século XVI, nos deparamos com uma figura 

interessante. Artista, filósofo, físico, engenheiro, inventor, arquiteto, escultor, cartógrafo, 

geólogo, astrônomo, anatomista, compositor, poeta, cozinheiro, e matemático. Seu nome? 

Leonardo Da Vinci, filho do notório advogado Piero de Antonio Da Vinci, e da camponesa 

Catarina. Viveu em uma época propícia para desenvolver seus talentos: a Renascença. Em 
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poucas linhas o pensador Giorgio Vasari define Leonardo: "Cada uma de suas ações é tão 

divina que, deixando atrás de si todos os outros homens, expressamente se faz conhecer 

como uma coisa concedida por Deus" (BAGNI; D'AMORE, 2011, p. 1). Para Freud 

Leonardo é “um homem que acordou muito cedo da escuridão enquanto outros homens 

dormiam." (BAGNI; D'AMORE, 2011, p. 1). 

No que tange à Matemática, Leonardo, amante da Geometria
41

 dedicou-se ao 

trabalho com figuras geométricas. Sua realização mais notável neste campo é o poliédrico, 

conjunto de ilustrações (Cf. figuras 28 a 30) nas obras “Summa de Arithmetica, 

Geometrica, proportioni et proportionalita” (1494)
42

 e “De divina proportione” (1509)
43

 de 

Luca Pacioli
44

. 

                                                 
41

 Como podemos constatar em Atalay (2008, p. 144): “Espalhadas entre os manuscritos de Leonardo 

da Vinci, junto com desenhos, anotações, rabiscos e cálculos, há também diversas criações poliédricas, fruto 

do que Leonardo denominava sua ‘recreação geométrica’. Com infinitas possibilidades de variação, esses 

poliedros regulares e semirregulares parecem ter fascinado Leonardo”. (grifo nosso) 
42

 Publicado em Veneza, constituía-se como uma coletânea de conhecimentos de Aritmética, 

Geometria, proporção e proporcionalidade. 
43

 Segunda obra mais importante de Pacioli, ilustrada por da Vinci, que tratava sobre proporções artísticas, 

além é claro de utilizar e discutir a razão áurea. Segundo narrativa de Bagni; D’Amore (2011, p. 72), nas 

primeiras páginas, Pacioli narra um debate, a qual denomina de “duelo científico” ocorrido na corte de 

Ludovico, o Moro, em 9 de fevereiro de 1498, na presença de eclesiásticos, teólogos, médicos, engenheiros e 

“ inventores de coisa novas”(entre esses inclui Da Vinci). 
44

 Luca Bartolomeo de Pacioli (1445 – 1517), monge franciscano e célebre matemático italiano. Em 1475, 

tornou-se o primeiro professor de matemática da Universidade de Perugia. Pacioli tornou-se famoso devido a 

um capítulo deste livro que tratava sobre contabilidade: Particulario de computies et scripturis. Nesta seção 

do livro, Pacioli foi o primeiro a descrever a contabilidade de dupla entrada, conhecido como método 

veneziano (el modo de Vinegia) ou ainda "método das partidas dobradas", por isso é considerado o pai da 

contabilidade moderna. Esse sistema foi introduzido em 1494, em um tratado matemático o qual o mérito fora 

atribuído a Leonardo de Pisa (Fibonacci), que por sua vez, introduzira tal metodologia 3 séculos antes, em sua 

obra Summa. Graças à sua obra (Summa de Arithmetica, Geometrica, proportioni et proportionalita), Pacioli 

foi convidado a lecionar Matemática na corte de Ludovico de Milão. 

http://pt.wikipedia.org/wiki/1445
http://pt.wikipedia.org/wiki/1517
http://pt.wikipedia.org/wiki/Monge
http://pt.wikipedia.org/wiki/Franciscano
http://pt.wikipedia.org/wiki/Matem%C3%A1tico
http://pt.wikipedia.org/wiki/It%C3%A1lia
http://pt.wikipedia.org/wiki/1475
http://pt.wikipedia.org/wiki/Perugia
http://pt.wikipedia.org/wiki/Contabilidade
http://pt.wikipedia.org/wiki/M%C3%A9todo_das_partidas_dobradas


 
 

51 

 

 
 

Fonte: http://jonasportal.blogspot.com.br/2010/03/os-poliedros-de-leonardo-da-vinci.html 

Figura 28: O termo Ycocedron Planus Abscisus na placa título significa icosaedro 

truncado.  
 

 

  
Fonte: http://jonasportal.blogspot.com.br/2010/03/os-poliedros-de-leonardo-da-vinci.html 

Figura 29: Os Poliedros de Leonardo da Vinci – desenhos feitos manualmente com admirável perfeição. 
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Fonte: (ATALAY, 2008, p. 115) 

Figura 30: Ilustrações de Da Vinci em De divina proportione. 

 

Em De divina proportione além de texto explicativo, há 60 ilustrações, das quais 

vários poliedros bem como o desenho de um novo tipo de letra impressa – caracteres 

vitruvianos. É possível também verificar a presença de uma figura onde faz-se análise das 

proporções de um rosto humano tomado de perfil; em tal gravura é traçado um triângulo 

equilátero com um dos vértices localizado na base do crânio e base oposta tangenciando o 

perfil (Cf. figura 30).  

Da Vinci, que além de amigo também foi aluno de Pacioli, que nutria fascínio pela 

Geometria
45

, desenvolveu uma “demonstração por experimentação” ou “demonstração por 

decomposição”, apresentada em Loomis (1968, p.129), do teorema de Pitágoras. 

                                                 
45

 “O interesse pela geometria, já tão presente em Leonardo, cresce imensamente à medida que Luca 

(Pacioli) a revela para ele.” (BAGNI; D’AMORE, 2011, p. 62 ─ grifo nosso). 
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Fonte: Loomis (1968, p. 129) 

Figura 31: Demonstração de Leonardo Da Vinci do teorema de Pitágoras 

Santos; Silva; Lins (2012) a partir de leituras de Lima (1998, p. 55) destaca que os 

quadriláteros LCAH, HBKL, DEFG e DBAG são congruentes e, consequentemente os 

hexágonos AGFEDBA e AHBKLC têm a mesma área; donde resulta que a área do quadrado 

ABKC é a soma das áreas dos quadrados AGFH e EDBH. 

Da Vinci se baseou no princípio da comparação de áreas. Ele fez uso de uma 

forma mais complexa e de difícil visualização. Utilizou as áreas dos quadriláteros 

formados a partir de uma figura desenhada anteriormente para comprovar suas 

equivalências e assim comprovar a relação existente entre os lados dos triângulos 

retângulos. (LIMA, 2006, apud: SANTOS; SILVA; LINS, 2012). 

Loomis (1968, p. 129), na demonstração 46, apresenta a mesma figura e alega não 

ser necessário explanar a respeito da construção e, das 23 linhas destinadas à demonstração 

de Da Vinci; apenas 8 destinam-se às comparações que levam à demonstração por 

decomposição. 

No entanto, propomos que debulhemos a figura 31 para outra demonstração, por 

decomposição, a partir do que foi exposto. 
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{1} Tomemos como 1ª hipótese que o 

triângulo ABH é retângulo em H  (Cf. 

figuras 32). 

Como tese, ou seja, aquilo que 

queremos mostrar, é que a soma das áreas 

dos quadrados BDEH e AGFH é igual à área 

do quadrado ABKC. 

Figura 32: 1ª hipótese – ABH é retângulo em 

H . 

 

 

{2} Agora tracemos a partir dos lados do ABH os quadrados ABKC, AGFH e 

EDBH. (Cf. figura 33). 

{3} Ligando os vértices F e E formamos o HFE , retângulo em H  e, portanto, 

congruente ao ABH  (Cf. figura 34). 

{4} Logo a área dos triângulos HFE  e ABH são iguais (Cf. figura 34). 

  
Figura 33 Figura 34 
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{5} GH  e HD  são diagonais dos 

quadrados AGFH e EDBH, 

respectivamente. Como H é um ângulo reto, 

GD  é um segmento de reta que passa por H 

(Cf. figura35). 

{6} Mas veja que os triângulos 

retângulos GFH e GAH são congruentes 

e, portanto têm áreas iguais, pois são 

formados a partir da diagonal GH  do 

quadrado AGFH (Cf. figura 35). 

Figura 35  

{7} Analogamente os triângulos retângulos HED e DBH também são 

congruentes e, consequentemente, têm áreas iguais, pois são formados a partir da diagonal 

HD  do quadrado EDBH (Cf. figura 35). 

{8} Assim, de {5}, {6} e {7}, temos que os quadriláteros GFED e GABD são 

congruentes. 

 

{9} Se traçarmos uma paralela à HB  

pasando por C e uma paralela à AH  pasando por 

K, formaremos o CLK , retângulo em L e 

congruente
46

 ao EHF e ao BHA  (Cf. figura 36). 

{10} Observemos que no hexágono 

AHBKLC temos AH // LK e HB // LC (Cf. figura 

36). 

 

                                                 
46

 Pelo teorema de Tales, do feixe de paralelas cortadas por uma transversal. 
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Figura 36  

{11} Ao traçarmos o segmento HL formamos o HAM  congruente ao NLK , 

portanto com áreas iguais. Analogamente formamos o HMB  congruente ao NLC , 

portanto com áreas iguais (Cf. figura 37). 

{12} De {11}, devido às respectivas 

relações de congruências temos que AM é 

congruente a NK , assim como MB é 

congruente a NC , do que resulta que os 

trapézios retângulos AMNC e MBKN são 

congruentes, portanto com a mesma área. 

{13} De {9}, {10}, {11} e {12} 

temos que os quadriláteros AHLC e LKBH 

são congruentes, portanto de áreas iguais 

(Cf. figura 37).  

{14} Observemos   os   quadriláteros  Figura 37 

HACL e GFED (Cf. figura 36). GF  é congruente a AH , FE  é congruente a AC  e ED  é 

congruente a CL , pois, como vimos em {9}, CLK  é congruente ao BHA . 

Consequentemente o ângulo GFE é congruente ao HAC, da mesma forma que o ângulo 

DEF é congruente ao ângulo LCA. Então, GD  é congruente a HL  o que resulta na 

congruência dos quadriláteros HACL e GFED. 

{15} Mas, de {8} vimos que os quadriláteros GFED e GABD são congruentes e de 

{13} vimos que os quadriláteros AHLC e LKBH são congruentes. Logo, daqui e de {14} os 

hexágonos AGFEDB e AHBKLC são congruentes e, portanto têm a mesma área. 

{16} Vejamos que o hexágono AGFEDB é formado pelos triângulos  EHF e 

BHA (de mesma área) e pelos quadrados AGFH e EDBH. Da mesma forma, o hexágono 
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AHBKLC é formado pelos triângulos CLK e BHA (de mesma área) e pelo quadrado 

ABKC. Como estes dois hexágonos, AGFEDB e AHBKLC têm a mesma área (Cf. {15}), 

por decomposição, podemos extrair os quatro triângulos congruentes – eliminando-os dois 

a dois − de cada um desses hexágonos, restando assim o que queríamos demonstrar. Que “a 

soma das áreas dos quadrados BDEH e AGFH é igual à área do quadrado ABKC.”. 

Mas apesar de sua genialidade e desenvoltura com a Geometria, afirma Bagni; 

D’Amore (2011, p. 64) que “Leonardo não parecia sentir-se à vontade com as frações.” O 

que pode ser comprovado no verso da folha 191, do Código Atlântico
47

. 

 

3.3. Padrões matemáticos nas obras de Da Vinci: 

Os escritos mais importantes de Leonardo apontam sua relação com a Matemática. 

Suas coleções mais importantes são 10 códigos
48

, dos quais envolvendo Matemática são: 

Código Atlântico; Código Arundel; Códigos de Madri; Códigos do Instituto de França; 

Códigos Foster. 

As considerações geométricas e as construções geométricas exatas que foram 

encontradas até agora no famoso Código Atlântico e nos outros manuscritos 

impressos não são suficientes, embora tudo que neles se leia seja original, para 

considerar Leonardo entre aqueles que souberam acrescentar alguma página à 

geometria herdada dos gregos (a única conhecida em seu tempo). Além disso, a 

ideia, manifestada por ele, de obter a retificação da circunferência fazendo 

escorregar uma roda sobre uma haste reta, confirma a opinião de que ele se 

interessava por geometria apenas na medida em que essa ciência resultava ser útil 

aos pintores e aos arquitetos. É uma conclusão que se confirma nas aplicações por 

ele realizadas de algumas lúnudas de Hipócrates (...) à quadratura de figuras 

complicadas, esteticamente admiráveis, mas carentes de valor científico. 

(LORIA, 1929-1933, p. 263 apud. BAGNI; D’AMORE, 2011, p. 62). 

                                                 
47

 Ao tratar da obra de Leonardo Da Vinci adota-se o nome de Código para cada uma de suas 

coleções. Trata-se de cerca de 5.000 páginas de apontamentos que possuem a peculiar característica de terem 

sido grafados da direita para esquerda, elemento característico desse notório canhoto. 
48

 Código Atlântico (1478-1518), Código Arundel (1478-1518), Código Windsor (1478-1518), 

Código Trivulziano (1487-1490), Código Ashburnam. Códigos de Madri (1490-1505), Códigos do Instituto 

de França, Códigos Foster (1493-1505), Código Leicester (1504-1506) e Código sobre o voo dos pássaros 

(1505). 
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Pelo que expusemos até então é possível ver que, mais do que verificar a existência 

de padrões nas obras de Da Vinci, é incontestável o quanto Leonardo produz Matemática e 

mesmo que os sépticos aleguem ser aquém da Matemática que hoje se conhece, lembramos 

ser muito além da Matemática produzida na sua época. 

Sua admiração pela razão áurea é apresentada por Bagni; D’Amore (2011): 

A geometria do nosso protagonista torna-se mais culta, os problemas propostos 

são quase sempre extraídos da obra de Pacioli, com frequência, por sua vez, 

extraídos de Euclides. Leonardo apaixona-se pela razão áurea que lhe é 

apresentada por Pacioli, à qual dá o nome de ‘divina proporção’. (BAGNI; 

D’AMORE, 2011, p. 72). 

Mas o próprio Leonardo declara essa admiração pela teoria das proporções 

(incluindo a divina proporção) ao discorrer sobre a anatomia humana com o propósito de 

tratar suas obras. Mesmo que não tenha sido o primeiro a descrever as proporções ideais do 

rosto com obsessiva exatidão, escreveu mais de 800 páginas a respeito da 

proporcionalidade do rosto e depois passado ao resto do corpo, como pode ser observado 

no Código Atlântico e no Código Windsor. 

A DIVINA PROPORÇÃO E A ANATOMIA HUMANA − A distância entre a 

fenda da boca e base do nariz é um sétimo do rosto [...]. A distância entre a boca 

e abaixo do queixo será um quarto do rosto, assemelhando-se à largura da boca 

[...]. A distância entre o queixo e a base do nariz será metade do rosto. Se 

dividirmos em quatro partes iguais o comprimento total do nariz (ou seja, desde a 

ponta até a junção com as sobrancelhas), veremos que a parte inferior 

corresponde à distância entre acima das narinas e abaixo da ponta do nariz; a 

parte superior, à distância entre o duto lacrimal e o início das sobrancelhas; e as 

duas partes intermediárias, à distância entre os dois cantos de cada olho. 

Leonardo da Vinci (ATALAY, 2008, p. 131) 

Veremos em figuras adiante que Da Vinci lançou mão de recursos que envolvem a 

retângulos áureos. Já vimos anteriormente a relação entre retângulos áureos e a sequência 

de Fibonacci, mas é Atalay (2008) que relaciona Fibonacci a Da Vinci: 

[...] há entre a matemática, a estética e a ciência uma ligação mais ampla que nos 

leva a pôr os dois Leonardos (o Da Vinci e o Fibonacci) sob a mesma égide 

intelectual. Mas, no fim das contas, temos também a poderosa imagem de 

afluentes intelectuais cujas nascentes eram muito anteriores (no antigo Egito, na 

Índia, na Babilônia e na Grécia clássica), mas cuja confluência só se daria muito 

depois. (p. 116). 
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Vitrúvio
49

 formulou uma teoria arquitetônica inspirada nas proporções do corpo 

humano. 

Lembremos que Leonardo da Vinci estuda as proporções da figura humana 

segundo os ditames de De architectura, de Vitrúvio, que se baseia justamente nas 

relações do número áureo. Segundo Leonardo, as proporções humanas são 

perfeitas quando o umbigo divide o homem de maneira áurea. (BUSSAGLI, 

1999). É necessário lembrar que Dürer realizou estudos análogos como prova a 

imagem ... e que é espontâneo compará-la com a do homem Vitruviano de 

Leonardo. (BAGNI; D’AMORE, 2011, p.80) 

 

Fonte: (BAGNI; D’AMORE, 2011, p. 80) 

Figura 38: As proporções do corpo humano, segundo Albrecht Dürer. 

Da Vinci, não apenas sorvera tal teoria, mas reverenciou o criador desta nos 

brindando com o Homem Vitruviano (Cf. figura. 39). 
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 Marcos Vitrúvio Polião, arquiteto e engenheiro romano que viveu no século I a.C. deixou como 

legado a sua obra em 10 volumes, aos quais deu o nome de De Architectura (± 40 a.C.) que constitui o único 

tratado europeu do período greco-romano que chegou aos nossos dias e serviu de fonte de inspiração a 

diversos textos sobre construções, hidráulicas, hidrológicas e arquitetônicas desde a época do Renascimento. 

Os seus padrões de proporções e os seus princípios arquiteturais: utilitas, venustas e firmitas (utilidade, beleza 

e solidez), inauguraram a base da Arquitetura clássica. 

(http://www.unifra.br/professores/13970/aula/Aula%201%20RESUMO.pdf) 
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Fonte: (ANTOCCIA et al, 2004, p. 81) 

Figura 39: O Homem Vitruviano de Leonardo Da Vinci. 

No Homem Vitruviano a distância entre as extremidades das mãos (com os braços 

na perpendicular) é igual à altura do indivíduo. Quando este eleva os braços e abre as 

pernas, inscreve-se num círculo, cujo centro se localiza no umbigo. Aqui, mais uma vez, a 

razão entre a altura do indivíduo e a do umbigo é a áurea: ...618,1  

Tomando figuras sentadas ou eretas, com o propósito de estudar as funções 

assimétricas dos hemisférios cerebrais se manifestassem diferentemente em obras de 

artistas renomados  Christopher Tyler, neurocientista em San Francisco, propôs uma análise 

estatística levando em conta 4 hipóteses: (i) a do eixo principal; (ii) a da razão áurea; (iii) a 

do centro na cabeça; (iv) a do centro em um dos olhos. Atalay (2008, p. 189) destaca que à 

primeira vista, “a maioria dos observadores concordaria que, nos retratos, os olhos em geral 

se localizam perto do centro da tela.”. Contudo, as análises de Tyler revelaram algo mais 

preciso: “um dos olhos, quer o composicionalmente denominante quer o outro, alinhava-se 

numa distribuição gaussiana (curva normal) com a reta central ou nas proximidades dela, 
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havendo um estreito desvio-padrão de ± 5% da largura do quadro.” (ATALAY, 2008, p. 

190). 

Tomando os quadros verticalmente, Tyler constatou que a altura dos olhos se 

achava no maior número de vezes não nas proximidades da reta horizontal central, mas nas 

proximidades do número de ouro depositado sobre a reta central vertical; isto é, a ± 61,8% 

da altura do quadro, como podemos constatar nas figuras 40 e 41 a seguir. 

  

Figura 40: Mona Lisa Figura 41: Dama de arminho – Cecilia 

Gallerani 

 

4. Conclusões: 

O músico e arranjador Ian Guest, em sua obra Arranjo: método prático
50

, diz que 

“A deficiência em música, felizmente, não faz vítimas como na medicina ou no volante. 

Deitar a mão no instrumento impunemente é o começo de tudo [...] e a linha de chegada.”. 

Parafraseando Guest pensamos que uma deficiência em relação ao ensino de Matemática 

(que pode levar ou não a um aprendizado), felizmente, não faz vítimas como na medicina 
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 GUEST, I. Arranjo: método prático. V. 1. 4. Ed. Rio de Janeiro: Lumiar, 1996, 150 p. 
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ou no volante, porém, quando tomamos o ETM como modelo, quando nos limitamos a 

trabalhar no ambiente vigente que o caracteriza, quando passamos a defender a Matemática 

(com seu formalismo exacerbado), bem como certa maneira de ensinar, como algo 

imutável, o número de vítimas passa a ser maior do que as vítimas de trânsito ou da falta de 

assistência médica adequada. Por isso defendemos usar a Matemática impunimente, tal 

como o instrumento musical de Guest, ou como os códigos de Da Vinci, como uma 

ferramenta a serviço de ações educativas que sejam transformadoras e comprometidas com 

projetos que primam por adotar ambientes investigativos de aprendizagem. Observemos 

que tal rigidez, bem como a linearidade apresentada no quadro 1, contrapõem-se a um dos 

princípios norteadores para área de Matemática no Ensino Básico, apresentado nos PCN: 

A aprendizagem em Matemática está ligada à compreensão, isto é, à atribuição e 

apreensão de significado; apreender o significado de um objeto ou acontecimento 

pressupõe identificar suas relações com outros objetos e acontecimentos. Assim, 

o tratamento dos conteúdos em compartimentos estanques e numa rígida sucessão 

linear deve dar lugar a uma abordagem em que as conexões sejam favorecidas e 

destacadas. O significado da Matemática para o aluno resulta das conexões que 

ele estabelece entre ela e as demais áreas, entre ela e os Temas Transversais, entre 

ela e o cotidiano e das conexões que ele estabelece entre os diferentes temas 

matemáticos. (BRASIL, 1998c, p. 56-57) 

Guest nos lembra de que aprender a falar – o maior desafio da infância – é combinar 

brincadeiras e desejo de se comunicar, assim como aprender a desenhar, pintar, esculpir em 

massinhas, quando na infância. A música, bem como as demais formas de Arte, também 

nasce pela mesma motivação. Não se prenda nos limites da leitura. Ela é o produto final e 

ameaça aposentar o ouvido, bem como a criatividade. Da mesma forma lembramos que é 

difícil usar a Matemática como linguagem, por isso brincar com suas ideias e princípios, 

sobretudo tomando referenciais da História (da humanidade, da Arte, da Matemática, das 

civilizações etc.) deva ser um grande desafio levado ao aluno. Ir aos procedimentos 

adotados pelos antigos, tentar identificar significados produzidos por civilizações que 

tomaram a Matemática como ferramenta, assim como Tales e Leonardo, para resolver suas 

práticas cotidianas, de ordem social, artística, cultural, religiosa, econômica etc., possibilita 

que se estabeleçam relações e se produzam − além da capacidade de argumentação, 
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comparação e validação de processo − o desenvolvimento da Matemática como linguagem, 

tal como é enunciado nos princípios a seguir dos PCN:  

▪ No ensino de Matemática, destacam-se dois aspectos básicos: um consiste em 

relacionar observações do mundo real com representações (esquemas, tabelas, 

figuras, escritas numéricas); outro consiste em relacionar estas representações 

com princípios e conceitos matemáticos. Nesse processo, a comunicação tem 

grande importância e deve ser estimulada, levando-se o aluno a ‘falar’ e a 

‘escrever’ sobre a Matemática, a trabalhar com representações gráficas, desenhos, 

construções, a aprender como organizar e tratar dados. 

▪ O ensino da Matemática deve garantir o desenvolvimento de capacidades como: 

observação, estabelecimento de relações, comunicação (diferentes linguagens), 

argumentação e validação de processos e o estímulo às formas de raciocínio 

como intuição, indução, dedução, analogia, estimativa. (BRASIL, 1998c, p. 56-

57) 

A motivação para aprender Matemática deve estar presente na sua utilização, na 

resolução de problemas locais, pontuais, úteis à vida e que permitam o exercício da 

experimentação, intuição, da investigação. Não nos prendamos aos limites do formalismo, 

pois o formalismo matemático é produto (ergon ou opus), não processo, e ameaça a todos 

aqueles que pensam em usar a Matemática como uma ferramenta de leitura do mundo e de 

criatividade às suas vidas. Lembremo-nos que as obras de Da Vinci (produto) são frutos de 

observações, estudos, testagens, esboços, ensaios (processo). 

Com essa proposta a construção do conhecimento matemático se dá pelo desejo de 

usar a Matemática impunimente, como um instrumento, uma obra de arte e de forma 

prática. A comunicação (aprendizado) se estabelece quando o aluno experimenta a 

Matemática (brincando com erros e acertos) na intervenção de um problema local, na 

investigação de algo que lhe é proposto quando envolve um número maior de sentidos, 

como o tato, associado à visão, à audição e até ao olfato, pois as obras de arte têm cheiro, 

sobretudo telas e livros. Isso faz sentido e gera aprendizado. Lembremo-nos que ensinar é 

algo distinto de aprender. O professor pode ensinar bem e isso não implica que o aluno 

compartilhará do mesmo espaço comunicativo que o professor. É possível que esteja aí um 

dos grandes problemas do ETM: acreditar que basta ensinar para aprender. 
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Usar a Matemática, seus princípios e procedimentos como ferramentas a serviço de 

temas geradores, processos investigativos, retomada à História (da humanidade, da Arte, da 

Matemática, das civilizações etc.), processo de leitura e interpretação de obras de arte etc., 

é um convite a desapegarmo-nos do ETM – sobretudo um convite à liberdade. Trabalhar a 

Matemática em sala de aula dessa forma é cultivar a liberdade de se expressar e não deixa-

la morrer. Para tal, precisamos estimular a criatividade e diante disso, o professor de 

Matemática assume o compromisso de, além de tratar das estruturas matemáticas, passa a 

trabalhar com seus princípios para permitir que seja construído o acesso à liberdade de 

criar, intuir, experimentar, investigar. Os papéis das fórmulas, regras, definições, corolários, 

teoremas etc. deixam de serem os principais entes do processo de ensinar e são reduzidos 

quando comparados a propostas que possibilitem a construção do conhecimento, da 

criatividade. 

Tal como a música e a pintura, entendemos a Matemática como uma linguagem 

desenvolvida e lapidada, sendo de fundamental importância que alunos e professores 

brinquem com ela, antes de se preocuparem com sua densa teoria e notação. Brincar para 

compreender seus princípios básicos. Primeiramente é preciso construir o conhecimento a 

respeito do que significa em termos de ideia, adicionar, subtrair, grandezas direta ou 

inversamente proporcionais, ou grandezas (in)comensuráveis, para depois aprender a 

expressar algebricamente a leitura de um problema ou trabalhar com dado algoritmo. Dar 

nome a potência, raiz de equação, parábola etc. é consequência de se produzir significados 

pertinentes aos princípios fundamentais dessas coisas e onde elas podem ser usadas. 

A atividade matemática escolar não é ‘olhar para coisas prontas e definitivas’, 

mas a construção e a participação de conhecimentos pelo aluno, que se servirá 

dela para compreender e transformar sua realidade. (BRASIL, 1998c, p. 56-57) 

Uma conclusão que chegamos foi: é preciso desestabilizar o ETM, como também, 

qualquer estrutura rígida de controle que tenta tomar o professor como agente multiplicador 

de ideias, valores e costumes, para que possamos transvalorizarmo-nos e com isso 

minimizarmos os impactos socioambientais e culturais produzidos pelo regime de verdade 
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que privilegia o consumo, as injustiças e a destruição dos recursos naturais em prol do lucro 

e da imposição incisiva de suas verdades. 

Defendemos como verdade que promover ambientes investigativos de 

aprendizagem − pautado em princípios de liberdade − valorizando os potenciais artísticos e 

culturais dos alunos, constituem-se como instrumentos de desestabilização da atual ordem 

social vigente, mas que também é necessário desenvolver tais ambientes livremente para 

que não sejam capturados pelas instituições de sequestro passando a sofrer restrições que 

inviabilizem seu caráter despojado, comprometido, sobretudo com a experimentação e com 

o livre pensar, com o respeito ao indivíduo e à natureza.  

Optamos por desestabilizar o ETM a partir de questões artísticas e históricas para 

que possamos subverter a concepção positivista e homilética de propagação de discursos 

segundo o foco da necessidade de utilizar a Matemática como base às relações de comércio, 

em prol de utilizá-la para minimizar impactos que prejudicam o ambiente e alijam as 

pessoas. Para tal, deixamos como recomendação: 

Evite aceitar as coisas sem questioná-las – teste-as antes. Nunca desista de aspirar 

ao aprimoramento pessoal, não importando em que fase da vida esteja: leia 

sempre, leia com espírito crítico, procure o significado das palavras que não 

conhece, para assim ampliar o vocabulário. Tenha consigo um bloquinho e faça 

desenhos (mesmo se já se convenceu de que não sabe desenhar); isso o tornará 

mais observador. Observe à maneira do cientista, usufrua à maneira do artista. 

Registre suas observações. Experimente, sabendo muitíssimo bem que alguns 

experimentos hão de fracassar. Entretanto, é assim que se alcança um 

conhecimento mais profundo. É importante ser curioso, é importante explorar 

diferentes mundos intelectuais – e é essencial buscar as correlações entre eles. O 

modelo que funcionou maravilhosamente bem para ele não fará jamais que nos 

tornemos outro Leonardo, um homem que tantos estudiosos consideram “o maior 

gênio que já existiu”. Todavia, esse modelo não deixará de fazer que cada um de 

nós se torne muito mais criativo e seja mais ativo e efetivo no mundo intelectual 

que habitamos. (ATALAY, 2008, p.328-329). 
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