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The outline of the course (3 lectures, 1.5 hours each)

WE WILL DISCUSS:
∙ definition of basic numerical methods

∙ how to apply them in ecological problems

WE WILL NOT DISCUSS:
∙ programming techniques

http://web.mat.bham.ac.uk/N.B.Petrovskaya/NBPetrovskaya teaching.htm

∙ software for ecological applications
R.L.Burden, J.D.Faires. Numerical Analysis. Brooks/Cole, CA, 2005

∙ basic mathematics behind numerical methods
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The outline of the course (3 lectures, 1.5 hours each)

INTRODUCTION:

∙ Computational ecology beyond statistics
∙ Error analysis

HANDLING FUNCTIONS:

∙ Interpolation
∙ Numerical integration
∙ Finding roots

HANDLING FUNCTION DERIVATIVES:

∙ Numerical solution of ODEs
∙ Numerical solution of PDEs
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LECTURE 1: Error analysis and

function approximation

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



Why computational methods in ecology (apart from
processing big data sets)?

∙ Complexity of ecological problems
↓

∙ Complex mathematical models
↓

∙ Solution in closed form is not available
↓

∙ Numerical solution
↓

Is a numerical solution good enough? →
reliable and accurate computational methods
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What is wrong with the numerical solution?
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How do we know that the numerical solution is
correct?
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Error analysis

▶ A wrong ecological hypothesis

▶ Errors in the mathematical model

▶ Measurement errors

▶ Truncation errors

▶ Round-off errors
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Truncation error

∙ A truncation error is a characteristics of a numerical
method used in the problem.

∙ Example: Consider the population size n(t) and let the
population growth rate be dn(t)/dt .

– Replace dn(t)/dt by a finite difference (n2 − n1)/�t , where
n2 and n1 are the total number of a given species at time t
and t + �t .

– Assume zero error of the measurements.
– The error of the method (as we replace the true derivative

with a finite difference) has nothing to do with the
measurement error.
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Truncation error in ecological problems

∙ In ecological problems, while a huge body of the research
has been provided on the measurement errors, the
truncation error related to the method has not been studied
in detail.

∙ Example: Most of the sampling protocols currently used for
the pest control imply that the truncation error is much
smaller that the measurement error.

– The theory states the truncation error is fully controllable
and therefore the inherent error is of the utmost
importance.

– THIS IS NOT ALWAYS TRUE! (e.g. highly aggregated
density distributions)

– For a small number of samples the truncation error
becomes a random error.
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Truncation error

∙ A newly developed method is worthless without an error
analysis!

∙ It does not make sense to use methods which introduce
errors with magnitudes larger than the effects to be
measured or simulated.

∙ On the other hand, using a method with very high accuracy
might be computationally too expensive to justify the gain
in accuracy.

∙ Basic means of control: the quality (e.g. a polynomial
degree) of function or/and function derivative
approximation, the time step size, the grid step size
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Obtaining reliable and accurate numerical solutions
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Obtaining reliable and accurate numerical solutions

∙ Preparation: specification of objectives, geometry, initial
and boundary conditions, and available benchmark
information; selection of the numerical method.

∙ Verification: a process for assessing simulation numerical
uncertainty. Robustness of the simulation results should be
proved by comparing them with the known analytical
properties of the model, e.g. with exact solutions.

∙ Validation: a process for assessing simulation modelling
uncertainty by using benchmark experimental data.
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Summary

∙ Exploiting any computer program requires good
understanding of (a) the ecological problem, (b) the
mathematical model, and (c) a numerical method used in
the code.

∙ Error analysis is a must! Never skip preparation,
verification and validation steps when you solve a problem
numerically.

∙ "Do use others people software but if you cannot
understand a numerical algorithm behind the software,
then never use it." (F.S. Acton, 1990)
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Function interpolation

in ecological problems
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Ecological problem: pest insect monitoring and control

∙ The information about
pest population size
is obtained through
trapping

∙ Once the samples
(trap counts) are
collected, the total
number of the insects
in the field is evaluated

The need in reliable methods to estimate the pest population
size in order to avoid unjustified pesticides application and yet
to prevent pest outbreaks.
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Experimental layout for pest insect monitoring
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Example of spatial data: flatworm (Arthurdendyus triangulatus) spatial density

distribution u(x , y) reconstructed from field data.

Given the pest density u(x , y) at selected points, how can
we reconstruct the pest insects density at any point (x , y)?
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Example of temporal data: oscillations of the pest insect population

What is the accuracy of our evaluation?
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Example of temporal data: oscillations of the pest insect population

How to achieve reliable accuracy?
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An interpolation problem: outline

∙ Interpolation problem statement

∙ 1-d polynomial interpolation: Lagrange interpolation,
interpolation by divided differences

∙ Interpolation error

∙ Piecewise polynomial interpolation

∙ 2-d polynomial interpolation
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Interpolation problem

∙ Given the pairs (x0,F0), (x1,F1),. . ., (xN ,FN), the problem
of interpolation is to find an approximate value of f (x) that
corresponds to any selected value of x ∈ D.

∙ 1-d interpolation: Consider a 1-d domain [a,b]. Let only
one value Fi be defined at each point xi and Fi ≡ fi . For
such data the interpolation problem can be formulated as:
Given the pairs (x0, f0), (x1, f1),. . . (xN , fN), and an arbitrary
point x ∈ [a,b], find an approximate value of f (x).

∙ Straightforward solution: replace f (x) with a polynomial
p(x).
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Polynomial interpolation

∙ How do we know that the polynomial interpolation is good
enough for our problem?

– The Weierstrass approximation theorem.

∙ How can we construct a polynomial p(x) that will
interpolate f (x)?

– We have to use all input information given to us.
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Polynomial interpolation

∙ We have N + 1 pairs (xi , fi), i = 0,1,2 . . . ,N:

f (x) ≈ p(x) =
N∑

k=0

ak�k (x),

where �k (x) are polynomial basis functions chosen for the
approximation.

∙ Fit the polynomial to data:

p(xi) = f (xi), i = 0,1 . . . ,N.

∙ Solve for unknown coefficients a = (a0,a1, . . . ,aN),

Va = f.

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



Monomial basis

f (x) ≈ p(x) =
N∑

k=0

akxk .

a0 + a1x0 + . . .+ aNxN
0 = f0,

a0 + a1x1 + . . .+ aNxN
1 = f1,

...
a0 + a1xN + . . .+ aNxN

N = fN .

Because points (x0, x1, . . . , xN) are distinct, the matrix
inverse V−1 exists,

a = V−1f.

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



Lagrange interpolation

�k (x) ≡ Lk (x) =
∏
l ∕=k

x − xl

xk − xl
, k = 0,1, . . . ,N.

Lk (xi) = �ik =

{
1, if i = k ,
0, if i ∕= k .

p(x) =
N∑

k=0

f (xk )
∏
l ∕=k

x − xl

xk − xl
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Interpolation by divided differences

For any function g(x) the divided differences are

g(xi , xj) = (g(xi)− g(xj))/(xi − xj),
g(xi , xj , xk ) = (g(xi , xj)− g(xj , xk ))/(xi − xk ),

...
g(xi , xj . . . , xm, xp) = (g(xi , . . . , xm)− g(xj , . . . , xp))/(xi − xp)

Any polynomial is p(x) = p(x0) + (x − x0)p(x0, x1)+
. . . (x − x0)(x − x1) . . . (x − xN−1)p(x0, x1, . . . , xN)

We have f (x) ≈ p(x), p(xk ) = f (xk ) :

f (x) ≈ f (x0) +
N∑

k=1
ak�k (x) =

f (x0) +
N∑

k=1
f (x0, x1, . . . , xk )(x − x0)(x − x1) . . . (x − xk−1).

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



Interpolation error

∙ The accuracy of interpolation depends on

– the total length of the interval [a,b], where the points xi are
located,

– the polynomial degree N that we use for the interpolation.

∙ The interpolation error E(x) at the point x

E(x) = ∣f (x)− p(x)∣

How to estimate the interpolation error E(x) if f (x) is not
available?

E(x) = ∣f (x)− p(x)∣ =
∣∣ f (N+1)(s)hN+1

(N + 1)!
∣∣,

E(x) < ChN+1.
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Interpolation error

x0 x1 p1(1) e(1) er (1)
0 2 8.66025 6.16025 2.46410

0.5 1.5 4.13924 1.63924 0.655695
0.75 1.25 2.91612 0.416123 0.166449

0.875 1.125 2.60443 0.104427 0.0417709

Example: Linear interpolation of the function f (x) = 5x2sin(�6 x)
at the point x = 1.
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Piecewise interpolation

∙ Example: Consider (x0 = a, x1, x2, x3 = b) and let
fi = f (xi), i = 0,1,2,3.

∙ We can construct an cubic polynomial p(x) =
3∑

k=0
akxk ,

p(xi) = f (xi), i = 0, . . . ,3.

∙ Alternatively, piecewise linear interpolation
pm(x) = cm

0 + cm
1 x ,

where x ∈ [xm, xm+1], m = 0,1,2.
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2− D interpolation

∙ Let the function f (x , y) be defined at nodes (xi , yj) of a
rectangular grid, fij ≡ f (xi , yj).

∙ Given the values fij , the problem of interpolation is to find
an approximate value of f (x , y) corresponding to any
selected point (x , y) ∈ D.

∙ We can interpolate f (x , y) by applying consequent
interpolation to each coordinate x and y .
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2− D interpolation

∙ Consider 1− D interpolation in the x-direction for any fixed
j = 0,1,2, . . . ,N2:

f̃j(x) =
N1∑
i=0

fij
N1∏
p ∕=i

x − xp

xi − xp

∙ Given the values f̃j(x), consider 1− D interpolation in the
y -direction:

p(x , y) =
N2∑
j=0

f̃j(x)
N2∏
q ∕=j

y − yq

yj − yq

∙ The resulting interpolation formula is

f (x , y) ≈ p(x , y) =
N1∑
i=0

N2∑
j=0

fij
N1∏
p ∕=i

N2∏
q ∕=j

x − xp

xi − xp

y − yq

yj − yq
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Interpolation methods: checklist (incomplete!)

∙ Are you going to interpolate a function by polynomials?

∙ How much data are available to you? For a cloud of points
it may be better to use LS approximation. For sparse data
the accuracy may not be as expected.

∙ Check what data are available to you. Can you use a
standard interpolation algorithm?

∙ Decide whether you want to use interpolation by a single
polynomial or piecewise interpolation.
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Methods of numerical integration

in ecological problems
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Example of spatial data: flatworm (Arthurdendyus triangulatus) spatial density

distribution u(x , y) reconstructed from field data

The trap counts in the domain D are converted into the
values ui ≡ u(xi , yi) of the pest insect population density
u(x , y) at locations ri = (xi , yi), i = 1, . . . ,N.
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Numerical integration in the pest control problem

∙ If the density u(x , y) is known at any point (x , y) of the
domain D, the total pest population size I is given by

I =
∫∫
D

u(x , y)dxdy .

∙ For given precise values ui ≡ u(xi , yi), i = 1, . . . ,N, the
pest population size I is reduced to computation of a
weighted sum of the values ui ,

I ≈ Ia(N) =
N∑

i=1

!iui .

∙ The approximation error (integration error) depends on N,

e(N) =
∣I − Ia(N)∣
∣I∣

.

∙
Ia(N)→ I, as N →∞.
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Numerical integration technique

∙ Generate a regular grid of N nodes in the unit square.

∙ Consider the values ui , i = 1,2, . . . ,N at grid nodes.

∙ Replace u(x , y) with polynomial pn
K (x , y) of degree K in

the neighbourhood of node n.

∙ Integrate pn
K (x , y) instead of f (x , y) (Newton-Cotes

formulas)

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



1− D numerical integration: Newton-Cotes formulas

∙ Let x1 = a, xi+1 = xi + h, h = (b − a)/N and fi ≡ f (xi)

∙ Consider a polynomial pk (x) of degree k , pk (xn) = f (xn)
for n = i , i + 1, . . . , i + k .

xi+k∫
xi

f (x)dx ≈ ai =

xi+k∫
xi

pk (x)dx

∙ (a) p0(x) = const :
ai = hfi ,

I ≈ Ia(N) =
N∑

i=1

ai =
N∑

i=1

hfi =
N∑

i=1

!i fi

!i = h, i = 1, . . . ,N
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1− D numerical integration: Newton-Cotes formulas
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1− D numerical integration: Newton-Cotes formulas

∙ (b) p1(x) = c0 + c1x :

ai =
1
2

h(fi + fi+1),

∙ Trapezoidal rule of integration

I ≈ Ia(N) =
N∑

i=1

ai =
h
2

[
f1 + 2

N∑
i=2

fi + fN+1

]

!1 = !N+1 = h/2 and !i = h, i = 2, . . . ,N
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The trapezoidal rule of integration
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1− D numerical integration: Newton-Cotes formulas

∙ (c) p2(x) = c0 + c1x + c2x2:

Ii =

xi+2∫
xi

f (x)dx ≈ ai =
1
3

h(fi + 4fi+1 + fi+2)

∙ Simpson’s rule of integration

b∫
a

f (x)dx ≈ Ia(N) =
h
3

⎡⎣f1 + 2
N/2−1∑

i=1

f2i+1 + 4
N/2∑
i=1

f2i + fN+1

⎤⎦

!i =
4h
3
, i = 2,4, . . . ,N − 1, !i =

2h
3
, i = 3,5, . . . ,N − 2,

!i =
h
3
, i = 1, or i = N
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The Simpson rule of integration
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Approximation (integration) error

Pest abundance I ≈ Ia(N) =
N∑

i=1

!iui .

Ia(N)→ I, as N →∞

e(N) =
∣I − Ia(N)∣
∣I∣

→ 0, as N →∞.

▶ Given weight coefficients !i , i = 1, . . . ,N, the
approximation error depends on the number N of points
where the data are available.

▶ For any fixed N the approximation error depends on a
spatial pattern of the density function.
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Example: approximation error for a 1− d density
function

u(x)

x N=3

e(N)

N
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Convergence and tolerance

∙ convergence rate e = O(hp) (asymptotic convergence
estimate)
∙ tolerance � : e ≤ �
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2− D integration in rectangular domains

∙ Let the function f (x , y) be defined at nodes (xi , yj) of a
rectangular grid, fij ≡ f (xi , yj).

∙

I =

1∫
0

1∫
0

f (x , y)dxdy =
∑
i,j

Iij ,

where

Iij =

xi+1∫
xi

yj+1∫
yj

f (x , y)dxdy .

∙ The integration problem is reduced to the integral
evaluation in each sub-domain cij = [xi , xi+1]× [yj , yj+1]
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2− D integration in rectangular domains

∙ Consider a 1− D integral

Iij =

yj+1∫
yj

F (y)dy ,

where

F (y) =

xi+1∫
xi

f (x , y)dx .

∙ Employ 1− D Newton-Cotes formulas in order to evaluate
the function F (y)

∙ Example: Trapezoidal rule of integration

Iij ≈
h2

4
[
f (xi , yj) + f (xi+1, yj) + f (xi , yj+1) + f (xi+1, yj+1)

]
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Numerical integration for pest insect monitoring

Accuracy requirements are not very demanding:

e(N) ≤ �,

where � ∼ 0.2− 0.5 is a specified tolerance.
N is small in field measurements⇒ (often but not always)
inaccurate evaluation Ia of the pest abundance I.

▶ For any fixed (small) N the approximation error depends on
a spatial pattern of the density function.

What is the number N of traps to provide the accuracy
required in ecological applications?

What accuracy can we expect when N is fixed?

Can we rely upon convergence estimates e = O(hp)?
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Approximation error for different spatial density patterns

(a) e(N) ∼ 10−2 (b) e(N) ∼ 1.0
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Current challenges: "the coarse grid problem"

∙ Financial and labor resources available for monitoring are
always limited.

∙ N is small in field measurements⇒ (in some cases)
inaccurate evaluation Ia of the pest abundance I.

∙ Recognition of spatial patterns is extremely important!
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Basic concepts

∙ Approximation f (x) ≈ p(x)

∙ Accuracy E(x)→ 0

∙ Convergence E(x) = O(hm)

∙ Efficiency/convenience
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