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Abstract

The inverse freezing (IF) transition is studied with a quantum fermionic van Hemmen spin glass model. The disorder is treated without the use of replica
method, in which an exact mean field solution is obtained for two different types of quenched disorders: the bimodal and the gaussian ones. The IF is then
observed for certain range of chemical potential when the gaussian distribution is adopted. However, IF is destroyed by the quantum flutuations. Particularly, the
results suggest that the nontrivial SG free energy landscape, represented by strong disordered SG models, is not a necessary condition to generate a spontaneous
IF.

Introduction
Inverse transitions (IT) are a class of reversible phase transitions in
which the usually ordered phase appears at higher temperature than
the disordered one. In this case, there is an inversion of the en-
tropic contents between the ordered and disordered phases. Some
magnetic models have been proposed to investigate the features of
the IT [1]. For example, the Blume-Capel (BC) model [2], the
Ghatak-Sherrington (GS) model [3] and in infinite-range fermionic
Ising spin glass (FISG) models with a transverse magnetic field Γ
[4, 5, 6] in which a first-order IF can be found in phase diagrams of
the temperature versus the chemical potential. The chemical poten-
tial introduces statistical charge fluctuation, what controls the site
occupation. In the present work the fermionic van Hemmen spin
glass model in the presence of magnetic transverse field Γ is used
to study the inverse freezing (IF), which is an IT characterized by a
transition between a paramagnetic phase at low temperatures and a
spin glass phase at high temperatures [7]. In this model, the spin op-
erators are written as a bilinear combination of fermionic operators,
which allows the analysis of the interplay between charge and spin
fluctuations in the presence of a Γ field. The problem is expressed
in the fermionic path integral formalism and the disorder is treated
without the use of replica method. The thermodynamic potential is
obtained with two different types of quenched disorders: bimodal
(discrete) and gaussian (continuous).

Model
The fermionic van Hemmen (FvH) model with a magnetic trans-
verse field Γ is described by
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where the sums are over the N sites. The spin operators are de-
fined in terms of fermion creation (c

†
iσ) and annihilation (ciσ) oper-

ators. J0 represents a direct ferromagnetic coupling and Jij is the
desordered coupling given by Jij = J/N [ξiηi + ξjηj]. ξi and ηi
are independent random variables subject to a certain probability
distribution, bimodal and gaussian. Both distributions introduces
frustration in the problem, but the continuous one presents a larger
number of different values of ferromagnetic and antiferromagnetic
interactions Jij, that can generate a nontrivial frustration. The par-
tition function is obtained within the gran canonical ensemble by
using the Lagrangian path formalism. The gran canonical potential
per site Ω = − 1

Nβ〈〈lnZ〉〉 is given by
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which K(ξ, η) = cosh(βµ) + cosh β
√

[J0m + J(ξ + η)q]2 + Γ 2.

The order parameters spin glass and magnetization are obtained
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with ∆ = h2i + Γ 2 and hi = [J0m + J(ξ + η)q].

The notation 〈〈...〉〉 represents the average over the random variables
ξ and η that follow either the bimodal distribution or the gaussian
one, respectively expressed by
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Results
The analitical results are obtained by using the partition function
evaluated in the fermionic path integral formalism. Phase diagrams
T/J versus µ/J are build for the two types of disorder and several
values of the Γ field. They show a second-order transition from
the paramagnetic phase to the spin glass one when µ is small. The
increases of µ decreases the freezing tempetarure Tf until a tricrit-
ical point, after which the transition becomes first-order. The IF
is then observed for a certain range of µ only when the gaussian
distribution is adopted. However, the IF is destroyed by quantum
fluctuations introduced by Γ .
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Figure 1: Phase diagrams T/J versus J0/J for µ/J = 0 with two values of Γ/J : 0

and 0.5. The solid and dashed lines represent second and first order transitions,

respectively. Panels (a) and (b) show phase diagrams for the bimodal and gaussian

distributions respectively.
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Figure 2: Phase diagrams T/J versus µ/J for the bimodal distribution,
Γ/J = 0 and two values of J0. Results for J0/J = 0.00 and J0/J = 0.90 are
presented in panels (a) and (b) respectively. Here the same convention lines

as in Fig.?? is used.
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Figure 3: Phase diagrams T/J versus µ/J for Γ/J = 0 and gaussian distribution.

Panels (a) and (b) exhibit results for J0/J = 0.0 and J0/J = 0.9, respectively. The inset in

panel (b) presents results for J0/J = 0.80. The solid lines represent second-order

transitions while the dashed lines represent first-order transitions.
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Figure 4: (a) Entropy as a function of temperature for the gaussian distribution

with J0/J = 0 and Γ/J = 0.50. (b)ν versus µ/J for two isotherms, J0/J = 0, Γ/J = 0.00

and Γ/J = 0.5.
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Figure 5: Phase diagrams T/J versus µ/J when Γ/J = 0.5. Panels (a) and (b)

exhibit results for J0/J = 00 and J0/J = 0.90, respectively. The dotted and dashed lines

represent first order transitions for the bimodal and gaussian distributions respectively.

The inset in panels (a) presents results for J0/J = 0.00 and Γ/J = 0.3

Conclusions
The present work has studied the IF phenomenon by adopting a
fermionic formulation for the van Hemmen SG model in the pres-
ence of a Γ field. This quantum SG problem allows an analyti-
cal treatment, in which the partition function is evaluated in the
fermionic path integral formalism. An exact mean-field SG solu-
tion is then obtained without using the replica method, in which the
grand canonical potential is analyzed for two different disorder in-
teractions: one given by the bimodal distribution and the other one
by the gaussian distribution. The results suggest that the combined
effect of frustration and magnetic dilution (introduced by µ) are rel-
evant to generate spontaneously Inverse Freezing, while nontrivial
Spin Glass free energy landscape represented by strong disordered
SG models (where it is used the of replicas method) is not a neces-
sary condition.
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