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OBJECTIVE:

The main objective of the present work is to investigate the specific heat of the

repulsive Hubbard model including the pseudogap and also the superconducting

region. Superconductivity with 4._ . -wave pairing is considered and the effects of

such superconductivity on the specific heat, are also analyzed.

INTRODUCTION:

The Hubbard model is considered one of the simplest model which describes the
behavior of correlated electron system. Considerable attention is devoted to this model
mainly after the discovery of the high temperature superconductors (HTSC). Although
the Hubbard model has been largely investigated the existence of pseudogap and
superconductivity are still open questions. The analysis of the specific heat structure

can give us some informations about this regions.



METODOLOGY:

The Hubbard model which has been largely used to describes strongly correlated
electron systems is investigated here by the Green's functions technique. The equations
of motion of the Green's functions are treated by using a two poles approximation
[1,2].

The Hubbard model considers the hopping to first (£) and second (%) nearest
neighbors and also a Coulomb interaction between electrons with opposite spins and

localized in the same site i. The model 1s given by:
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in which ¢,c;, is the fermionic creation (annihilation) operator and o={M}

represent the spin. n, =c¢,,c;, is the density operator, ¢; is the hopping integral between



sites i and j which are nearest-neighbors. The symbol <<...>> indicates the sum over
the first and second-nearest-neighbors.

The equation of motion of the Green's functions is:
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In order to treat the equation of motion above, Roth [2,3] proposed to rewrite the
commutator as:
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where
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E and N are respectively, the energy and the normal matrices.
The {4, ]} is a set of operators that must to represent the most important excitations
of the system. In the present case the set of operators is {c,.como.cfoonigclo)

and the Green's functions of our interest are:
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bands in the superconducting state.
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Also, &,=—2%% 2W" £ —)gk and & =& T Xk are the renormalized bands in the

normal state.
The non interacting energy band is:

Ep = 2t(cos k_a+cos kya)+ 4t, cosk acosk a .

The quantity X, 1s given by X, = J(U—gk +W,)> +4nU(g, —W, ) and the
band shift
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A analytical expression for the specific heat

The analytical expression for the specific heat has been obtained following the

formalism presented in reference [3].

The equation of motion for operator €is (f) is
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multiplying by c;ra both sides of the equation above, making the sum in i and o and

taking the average of the ensemble we obtain
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and combing it with 2 <¢iCia (1) >, we get:
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by using the correlation function definition
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it 1s possible to obtain <H> explicitly. Then, through the relation E = we get the

energy per atom of the system. The specific heat ¢(7) 1s defined c(T) = or Therefore,
oT
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where f(w)=

- is Fermi function and I (wti¢)= [GAB (w+ie)- G (w- ie)J
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with 4() =¢;c () and . B(#'=0) =c;..
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FIG. 2: In the upper panel, the specific heat as a function of the temperature for

different values of <N>. The lower panel shows the superconducting order parameter.



CONCLUSIONS:

The numerical results show that the specific heat presents the peak at the
superconducting critical temperature Tc. Furthermore, above Tc, C(T) 1s characterized
by a two peaks structure which 1s a characteristic of the Hubbard model. The next step
in the present work is to include pseudogap effects associated to antiferromagnetic

correlations.
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