Laboratório de Teoria			d				d		d

SCHMIDT, M., ZIMMER, F. M., MAZIERO, J.

TEORIA DE CAMPO MÉDIO COM CLUSTERS CORRELACIONADOS APLICADAA SISTEMAS CLÁSSICOS

INTRODUÇÃO

Na natureza, uma transição de fase é uma mudança em determinadas grandezas físicas de um sistema. Encontramos exemplos interessantes desse fenômeno nos ferromagnetos, uma classe de materiais que apresentam magnetização espontânea abaixo de uma temperatura crítica (TC). A modelagem de sistemas compostos por partículas que apresentam momentos magnéticos intrínsecos (spins) tem contribuido para a compreensão dos resultados obtidos experimentalmente com materiais magnéticos. A Teoria de Campo Médio com Clusters Correlacionados (TCMCC), recentemente publicada por Daisuke Yamamoto, considera a matéria dividida em aglomerados (clusters) correlacionados entre si e tem fornecido bons resultados para diferentes estruturas e dimensões no modelo de Ising (MI) para sistemas clássicos de spins.

OBJETIVO

Neste trabalho analisamos em detalhes a TCMCC, compreendendo quais são os fatores responsáveis pelos bons resultados obtidos com tal teoria quando comparada às suas predecessoras. Para isso, aplicamos a TCMCC a modelos clássicos de spins, reproduzindo os resultados de Yamamoto e estudando a forma com que o método trata o comportamento da matéria.

METODOLOGIA

Após o estudo da TCMCC foram reproduzidos os resultados publicados por Yamamoto, através do desenvolvimento de programas computacionais na linguagem Fortran 90, visando o comportamento da magnetização em função da temperatura em 4 geometrias de rede diferentes. Também foram observadas as grandezas susceptibilidade magnética, energia interna e calor específico para a rede quadrada.

Figura 1 - Diferentes estruturas de rede para as quais foi aplicada a TCMCC: a) rede dividida em clusters quadrados explicitando os campos efetivos sobre o cluster central C ; b) rede quadrada explicitando os campos efetivos sobre o cluster C^{\prime}; c) rede triangular; d) rede cúbica; e) rede hexagonal.

O Hamiltoniano do modelo de Ising na TCMCC, para o cluster C é

$$
H_{C}=-J \sum_{<i j>\in C} \sigma_{i} \sigma_{j}-\sum_{i \in C} h_{e}^{\sigma_{i}} \sigma_{i}
$$

Onde os campos efetivos são dados por

$$
h_{e}^{\sigma_{i}}=J m^{\sigma_{i}}
$$

A magnetização da rede é dada por

$$
m=\operatorname{Tr}\left(\sigma_{i} e^{-\beta H_{C}}\right) / \operatorname{Tr}\left(e^{-\beta H_{C}}\right)
$$

Os campos provenientes dos clusters vizinhos são obtidos autoconsistentemente. Estes campos são utilizados no cálculo do Hamiltoniano do cluster principal. Por exemplo, para a rede quadrada, é necessário resolver os campos efetivos $h_{e}^{\sigma_{i} \sigma_{i}^{i}}=J m^{\sigma_{i} \sigma_{i}}$, onde

$$
m^{\sigma_{i} \sigma_{i}^{-}}= \begin{cases}m^{++} & \left(\sigma_{i}=+1, \sigma_{i}^{-}=+1\right) \\ m^{+-} & \left(\sigma_{i}=+1, \sigma_{i}^{-}=-1\right) \\ m^{-+} & \left(\sigma_{i}=-1, \sigma_{i}^{-}=+1\right) \\ m^{--} & \left(\sigma_{i}=-1, \sigma_{i}^{-}=-1\right)\end{cases}
$$

Foram realizadas simulações, através do método de Monte Carlo (MMC), visando traçar comparativos entre estes resultados e os obtidos com a TCMCC. Nesta linha de trabalho também foi realizado um estudo da Teoria de Campo Médio (TCM) e das soluções exatas do modelo de Ising

RESULTADOS

Os resultados publicados por Yamamoto da magnetização (m) em função da temperatura (T) foram reproduzidos para as redes quadrada, hexagonal, triangular e cúbica que são apresentados a seguir. Para a rede quadrada também são apresentados os resultados da simulação de Monte Carlo, da TCM e o exato para a geometria bidimensional.

Figura 2 - Magnetização em função da temperatura para rede quadrada: a) A Tc na TCM depende diretamente de z. A solução exata para esta rede apresenta $\mathrm{Tc}=2.269$. A simulação de Monte Carlo demonstra um comportamento semelhante ao da solução exata. A TCMCC apresenta a transição de fase na Tc=2.362; b) Os 4 campos médios ($\mathrm{m}^{++}, \mathrm{m}^{+-}, \mathrm{m}^{-+}$e m^{--}) resolvidos auto-consistentemente e a magnetização (m).

Figura 4 - Resultados da TCMCC para diferentes redes, apresentando melhorias em relação a TCM. Pela TCMCC as transições ocorrem em: hexagonal $(z=3)-1.593$; cúbica $(z=6)-4.753$; e triangular $(z=6)-4.519$.

CONCLUSÕES

A TCMCC permite a obtenção de excelentes resultados para geometrias de rede em duas e três dimensões no MI , portanto, a técnica é muito eficiente no tratamento de sistemas clássicos de spins. O método também foi aplicado para uma rede unidimensional $(z=2)$ no MI , não apresentando transição de fase. A indepêndencia de z é um dos fatores que qualifica a TCMCC em relação a outros métodos, como a TCM, que depende diretamente de z. A simplicidade de aplicação da técnica e o seu baixo custo computacional, levam a crer que a TCMCC trará bons resultados se aplicada a sistemas quânticos, sendo este o próximo foco deste projeto.

Kadanoff, L. P., J. Stat. Phys. 137 (2009) 777
Newman, M. E. J., e Barkema, G. T., Monte Carlo Methods in Statistical Physics. Oxford: Clarendon Press, 1999.
Yamamoto, D., Phys. Rev. B 79 (2009) 144427.

